

Deliverable No. 5.1.2

Deployment models of the CHIC technical
architecture and its private cloud

Grant Agreement No.: 600841

Deliverable No.: D5.1.2

Deliverable Name: Deployment models of the CHIC technical architecture and its
private cloud

Contractual Submission Date: 31/07/2016

Actual Submission Date: 04/08/2016

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 2 of 50

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and
Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D5.1.2

Document name: Deployment models of the CHIC technical architecture and its
private cloud

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

PU

Version: 3.0

Actual Submission Date: 04/08/2016

Editor:
Institution:
E-Mail:

Giorgos Zacharioudakis
FORTH
gzaxar@ics.forth.gr

ABSTRACT:

This deliverable reports on the available deployment models of the CHIC architecture and gives an
update on its current deployment view. In addition, the document lists the cloud deployment
models that suit specialized cloud architectures and provides an overview of the current cloud
deployment as well as a discussion on future prospects.

KEYWORD LIST:

Architecture, deployment, deployment models, cloud.

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 600841.

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group
specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 3 of 50

MODIFICATION CONTROL

Version Date Status Author

0.1 1/05/16 ToC & Initial
Draft

Giorgos Zacharioudakis, Stelios Sfakianakis,
Manolis Tsiknakis

0.9 30/07/16 Draft Giorgos Zacharioudakis

1.0 2/8/2016 Internal review Stelios Sfakianakis, Manolis Tsiknakis, Ioannis
Karatzanis

2.0 4/8/2016 Pre-final Giorgos Zacharioudakis

3.0 4/8/2016 Final version,
submitted to EC

Giorgos Zacharioudakis

List of contributors

 Giorgos Zacharioudakis, FORTH

 Stelios Sfakianakis, FORTH

 Ioannis Karatzanis, FORTH

 Manolis Tsiknakis, TEI-C

 Georgios Stamatakos, ICCS

 Dimitra Dionysiou, ICCS

 Nikolaos Tousert, ICCS

 Elias Neri, CUSTODIX

 Daniele Tartarini, USFD

 Philippe Buechler, UBERN

 Roman Niklaus, UBERN

 Nigel McFarlane, BED

 Shaopeng Wu, BED

 Pierre Grenon, UCL

 Holger Stenzhorn, USAAR

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 4 of 50

Contents

1 EXECUTIVE SUMMARY.. 5

2 INTRODUCTION .. 6

2.1 PURPOSE OF THIS DOCUMENT ... 6
2.2 CHIC ARCHITECTURE ... 6
2.3 DEPLOYMENT MODELS OF THE CHIC ARCHITECTURE .. 6
2.4 DEPLOYMENT MODELS OF THE CHIC CLOUD .. 7
2.5 STRUCTURE OF THE DELIVERABLE ... 7

3 DEPLOYMENT MODELS OF THE CHIC ARCHITECTURE .. 8

3.1 DEPLOYMENT MODELS FOR BACKEND SERVICES ... 8
3.2 DEPLOYMENT MODELS FOR FRONT-END SERVICES AND USER INTERFACES ... 10

4 CURRENT DEPLOYMENT VIEW ... 13

4.1 INTRODUCTION .. 13
4.2 NETWORK TOPOLOGY .. 13
4.3 CLOUD RESOURCES USED FOR CHIC VMS ... 14
4.4 USER INTERFACE LAYER .. 15
4.5 BUSINESS LOGIC LAYER .. 16
4.6 DATA INTEGRATION LAYER .. 22
4.7 SECURITY LAYER ... 28
4.8 SEMANTICS LAYER ... 35
4.9 INFRASTRUCTURE LAYER ... 37

5 CLOUD DEPLOYMENT ARCHITECTURES .. 39

5.1 GENERAL PURPOSE ... 39
5.2 COMPUTE FOCUSED .. 40
5.3 STORAGE FOCUSED ... 40
5.4 NETWORK FOCUSED .. 41
5.5 MULTI-SITE ... 42
5.6 HYBRID ... 42
5.7 MASSIVELY SCALABLE .. 42
5.8 SPECIAL CASES.. 43
5.9 LEGAL AND SECURITY REQUIREMENTS ... 43

6 THE CHIC PRIVATE CLOUD .. 45

6.1 INTRODUCTION .. 45
6.2 CURRENT DEPLOYMENT CONFIGURATION ... 45
6.3 TRANSITION OF THE CHIC PRIVATE CLOUD TO LARGE SCALE... 46

7 CONCLUSIONS .. 47

7.1 DEPLOYMENT MODEL VS. EXPLOITATION PLAN ... 47

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 5 of 50

1 Executive Summary

This deliverable reports on the available deployment models of the CHIC architecture and gives an
update on its current deployment view. In specific, the operational environment of the CHIC
platform, the dependencies and details of the technical implementation are presented and the
advantages and the drawbacks of alternative deployment models that could be used for the
realization of the CHIC architecture on different use cases, are discussed.

We also present the current deployment status of the CHIC private cloud and outline exemplar cases
of alternative deployment models of cloud infrastructures, which Openstack documents with
detailed architectural analysis and discuss their potential use as target models on a future
exploitation plan that demands a productive system of high scale and quality.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 6 of 50

2 Introduction

2.1 Purpose of this document

In this document we provide a status update on the deployment view of the CHIC architecture. We
describe the latest updates on the environment and the dependencies of the CHIC components,
different deployment models that could be used in the deployment of the CHIC architecture
depending on different use cases or restrictions and finally some examples of deployment models
and considerations on designing the cloud infrastructure.

2.2 CHIC architecture

In the CHIC deliverable D5.1.1 we documented the initial version of the CHIC technical architecture
based on the IEEE 1471 - ISO/IEC 42010:2007 standard. By using this standard we can describe the
architecture of a complex software system based on a set of Views and the corresponding
Viewpoints –different facets of the system as highlighted from corresponding perspectives.

The standard itself does not specify the Views that are necessary to describe the architecture of a
system. The Views may vary depending on the system, the stakeholders, where the architect wants
to focus most and to which extend of details. In D5.1.1 we selected the following subset out of the
views proposed in the Rozanski and Woods model3 for architecture description:

 The Functional view that documents the system’s functional elements, their responsibilities,

interfaces, and primary interactions.

 The Information view that documents the way that the architecture stores, manipulates,

manages, and distributes information.

 The Deployment view that describes the environment into which the system is deployed,

including the dependencies the system has on its runtime environment.

 The Security view that describes the security framework employed in CHIC and that was

included to the architecture due to the importance of the security to the CHIC platform,

because of the nature of the data and the stakeholder’s principles and constraints.

The final CHIC architecture will be documented in the deliverable D5.1.3, where an update of the
information on all the above Views will be compiled. In this document we provide an update on the
Deployment View as an interim report on the definition of the CHIC architecture and the
interconnection with the integration of all functional components to a usable platform, in
collaboration of WP5 with WP10. In addition, we provide some insights on alternative deployment
models that could be used either in the current CHIC platform or future deployments of its
architecture.

2.3 Deployment models of the CHIC architecture

The CHIC architecture is independent from the underlying technical infrastructure, the CHIC private
cloud. The deployment on the cloud was a technical decision since the initial design of the
architecture due to the great number of advantages that it offers compared to different approaches,

3 Rozanski, Nick, and Woods, Eoin. Software Systems Architecture: Working with Stakeholders Using

Viewpoints and Perspectives, 2nd Edition. Addison Wesley, 2011.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 7 of 50

however, the CHIC architecture combines a set of modular components that do not assume or
require the use of the cloud. The CHIC architecture could as well be deployed to one server
computer, following a centralized approach with a tight integration of components, or to several
distributed computers. The current deployment model, where the CHIC components are located to
the same physical location but on independent Virtual Machines (VMs), combines both the
centralized and the distributed approaches to a hybrid model that takes advantage of both worlds.
Depending on the use case, the availability of computation resources, the agility to the development
process etc. the current deployment model could be easily adapted. Although this flexibility is usually
easier to be applied to the backend services that are hidden from the end-user, different deployment
models are offered also to the front-end services and user interfaces. In chapter 3 we elaborate on
these alternatives.

2.4 Deployment models of the CHIC cloud

The CHIC private cloud could be characterized as a general purpose cloud, providing usual
functionality on the various aspects of such an infrastructure, on the computation, storage and
network modules. However, when designing a highly scalable system there are considerations that
should be examined early in the design phases. The CHIC platform aims to provide a system that
could cope with high demands on data storage, computation load for the execution of models, and
strict security considerations that result from the legal framework in which CHIC operates. We list
some examples of typical cloud deployments that could give a rough estimate on where CHIC lies in
terms of future needs. Identification of the CHIC operational demands would give a guide on how the
CHIC platform should evolve to serve these needs if extended to be a production platform with an
exploitation plan.

2.5 Structure of the deliverable

The rest of this document is organized as following: In chapter 3 we elaborate on the drawbacks and
advantages of different deployments of the CHIC architecture, independently of the underlying cloud
infrastructure and in chapter 4 we provide an update on the current deployment view of the
architecture, in order to clearly illustrate the technical details and restrictions of the platform. In
chapter 5 we examine alternative cloud deployment architectures as proposed by Openstack
developers, to adapt to different operational and functional requirements. In chapter 6 we provide a
view on the current CHIC cloud deployment and some remarks on alternative future deployments.
Finally in chapter 7 we discuss some conclusions and remarks on possible future deployments of
CHIC based on exploitation and operational scenarios.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 8 of 50

3 Deployment Models of the CHIC architecture

The deployment of the CHIC architecture can follow different models such as a centralized, a
distributed or a hybrid model for the deployment of its components. Alternative deployment models
are easier to be applied to the backend services that are mostly used by developers or through
programmatic interfaces. There are, however, alternative deployment models available also for the
front-end services and the user interfaces of the platform.

Below we discuss the advantages and drawbacks of each one of them.

3.1 Deployment models for backend services

As described already in D5.1.1 the deployment model that has currently been employed relies on
most of the backend CHIC components deployed on Virtual Machines on the CHIC private cloud
infrastructure. Although the components reside to the same physical location this technical
configuration could be seen as a hybrid rather than a centralized deployment model. A typical
centralized deployment would have all components installed on a single server or integrated into one
backend system. However, such a centralized system could only serve as a prototype; it could not
scale to meet the operational demands of a production system with large data sets and many
executions of different models and hypermodels.

Even in the current phase of the CHIC platform deployment where it is only used by the CHIC
consortium and not by external users and organizations, a centralized approach could not scale up to
meet the operational requirements. This is the reason why the nearest equivalent of a centralized
CHIC deployment is a private cloud based deployment.

3.1.1 Centralized, private cloud based

3.1.1.1 Development

Although the various components are all deployed on a centrally located site, in the CHIC private
cloud infrastructure at FORTH premises, the majority of components are installed on separate VMs.
Having the components deployed on different VMs, even if all reside to the same physical location,
affects the assumptions made during development and the degree of integration or separation
between them in a number of parameters such as security, programming interfaces, data storage
etc. This configuration allows us to maintain a clear functional separation of the developed modules.
The developers have flexibility in terms of the environment, libraries and resources that they use and
this separation is nearly equivalent of the distributed model where developers have full control and
flexibility on their local sites and configurations. In this centralized model developers can have access
as needed by having a common access policy, such as a shared VPN server or a common list of
permitted remote IP addresses. Network issues might arise now and then, in network connectivity or
speed, but the experience has shown that these issues are rare. Network issues arise also on the
need to upload all data to a central location; however, this is a one-off problem that pays out later by
having all data and computations located on the same physical premises.

In addition, by maintaining a functional separation of the components, if needed on a usage or future
exploitation scenario we have the ability to easily install the components on remote sites and
transform the deployment to a distributed model. In addition, the cloud infrastructure gives the
ability to download an image of a complete VM instance, thus cloning and re-producing locally all
components; a use case however that would need further configurations for its deployment.

However, we note that in a centralized deployment model there is a tight integration of the
components. When bugs have to be fixed, new functionality has to be added, or plain maintenance
tasks to take place these are better handled in a distributed model where the developers have direct
hands-on access to make the necessary interventions, implementations or configurations. There is

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 9 of 50

also the case of data, where having it stored on the premises of data providers ensures that the data
sets are more up to date and better curated.

3.1.1.2 Maintenance and administration

Maintenance and administration is easier in the centralized cloud model, due to the functionality
provided by the cloud infrastructure. New VMs can be created, cloned, transferred or expanded in a
few minutes. The cloud infrastructure makes easy the provision of images of tested and pre-
configured VMs, thus ensuring a common ground for developers, modellers or end-users.
Administration on many day-to-day tasks can be performed by the cloud administrators, thus
minimising the need for additional technical stuff on the premises of each partner. Due to the nature
of the cloud infrastructure in terms of hardware virtualization, fault tolerance, data replication etc.,
many of the usual administration concerns on physical hardware such as server crashes or hard disk
failures do not exist. Data backups are easily performed and snapshots of VMs can be stored and re-
instantiated at will. This deployment scenario also makes easier the future exploitation of the
platform since it minimizes the needs on technical personnel to maintain the production status of the
platform. However, in future exploitation scenarios this cost of maintenance needs to be accounted.
In the distributed model that we outline later below, this cost can be equally distributed to all
partners by maintaining their own tools.

3.1.1.3 Security

One of the major advantages of the private cloud infrastructure, if not the biggest, is the tools that it
offers to ensure the enforcement of a security policy. Communication can be strictly controlled both
inside the CHIC platform components as well as between CHIC platform and the public network.
Access policies can be globally enforced and monitored to all services, users and data. Besides the
remote access that developers have for the needs of implementation, all components and data are
isolated from the public network and any unauthorized access. The CHIC platform can expose to the
public only the necessary interfaces, either programmatic (API) or user interface. Access to
developers, usually through Secure Shell (SSH), is controlled separately than access for functional
needs of communication between components.

3.1.1.4 Resource usage

Another major advantage of the centralized deployment on a cloud infrastructure is the usage of a

common pool of resources, allowing both for elasticity and on-demand provision, thus better

resource utilization, as well as easy expansion and scaling of the platform by the flexible and user-

transparent ability to add more physical resources. Although the need to use local resources for

development still exists on a few cases, the majority of resources needed for the CHIC platform to be

up and running and providing services and data to its users are hosted on a central location, making

easier the future exploitation of the platform as noted also in the Maintenance and administration

section.

3.1.2 Distributed

The alternative deployment model that could be employed is the totally distributed model, in which
the developers host their services or data in their own premises, providing hardware resources and
technical personnel. Although this model was not used in CHIC, the current hybrid design and the
cloud functionality gives us the ability to transform it to a totally distributed deployment model on a
future exploitation plan. Below we outline the advantages and disadvantages of such a model.

3.1.2.1 Development

The development tasks in this model are performed easier in this task since the developers have
direct access and intervention to their tools when any issue arises. During the course of the project, a

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 10 of 50

distributed deployment model makes the development very agile and flexible to respond to changing
requirements and adopting research innovation. However, this model adds additional load to the
integration activities due to the network dependencies and the environment settings that need to be
properly aligned.

In addition, the distributed deployment model makes easier the upload and data curation of the data
sets, not only because it is performed on their local premises but also can avoid the curation of
duplicate copies which exist on the centralized model.

3.1.2.2 Maintenance and administration

The distributed model assumes that each partner has to maintain their own tools, employ technical
personnel and have appropriate budget for such tasks. This model could redirect a significant portion
of labour to second-priority tasks that would distract developers from their primary tasks.

The distributed model makes easier tasks such as bug-fixes and upgrades of the tools after the
project finishes, provided however that each partner keeps providing personnel and hardware
resources for the project. This task however seems difficult for the maintenance of the integrated
platform as a whole without securing appropriate budget, because many partners could not sustain
those tools or data curation without a specific future exploitation roadmap.

3.1.2.3 Security

One of the major drawbacks of the distributed model in the case of CHIC platform is the security
aspects of the project. The nature of the CHIC data and the strict legal requirements call for security
policies that are not easy to install, monitor and enforce in a distributed deployment model. Access
to data has to be strictly monitored and isolated. The data are used for computations and it would
not be easy to be transferred over the network combining both the performance and security
considerations.

3.1.2.4 Resource usage

In the distributed model, a major bottleneck is the network since all data have to be transferred
many times. For big datasets or for many executions of the same computation, this would impose a
huge limitation. Considerable effort would have to be placed on the design of the system in order to
be scalable.

3.2 Deployment models for front-end services and user interfaces

3.2.1 Desktop applications

The most classic deployment model for the front-end services is to develop them as desktop
applications. This provides the developers with total flexibility as to what programming language and
configuration to use for each type of operating system or environment, gives them access to local
resources (such as local files) and minimizes the security restrictions. It provides better
responsiveness, since the application takes full advantage of the local computation resources. In
addition, the desktop application can provide to the end-user a better user experience by integrating
all functionality with a common look and feel. This model also permits the utilization of legacy
applications that cannot be easily adapted to be used in different environments.

This model however has its drawbacks. The upgrade, bug-fixing or troubleshooting is not easy. For
different operating systems or environments there need to be different versions or releases of the
software, complicating the development as well as the maintenance. Each user takes care of the
installation or configuration or the software, a task that could be very difficult or error-prone for
many users especially for complex systems with many dependencies.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 11 of 50

In CHIC, this model was used with various tools, such as the standalone (desktop) version of
CRAF/Data upload tool and the DrEye application.

3.2.2 Web based

Another typical development and deployment model for front-end services and user interface is the
web application model. This model provides a unified view for all users, can be updated/upgraded
instantly as soon as new functionality is developed and does not require from the end-users any
administration or configuration tasks. It allows to the developers to provide almost global user
coverage by focusing on 2-3 major browsers, rather than maintaining the system for all operating
systems. However, this model has some disadvantages such as security restrictions on accessing local
resources and making it difficult to integrate diverse software that usually comprises a complex
system. Many times, the web based applications could be very unresponsive due to the network and
resource limitations, thus providing a negative user experience. Also, it is difficult to adapt legacy or
complex applications to web-based ones.

In CHIC we have employed this model on a number of components, such as the user interface of the
various repositories (Clinical Data Repository, Model Repository, InSilico Trial Repository) and also
the web version of CRAF (Clinical Research Application Framework).

3.2.3 Desktop as a Service

A deployment model that is gaining momentum lately with the cloud technology expansion is the
Desktop as a Service (DaaS). In this model, the user connects to a remote environment that
resembles a typical desktop environment, hosted on a cloud infrastructure. With this hybrid model,
the user can take benefit of both models; the desktop and the web based deployment. The DaaS
provides pre-configured images of an environment with all the necessary installations and
configurations, thus eliminating the need for a user to take care of those tasks. The update/upgrade
of the installed applications is as easy as updating a web based application, thus instantly providing
the latest version to all users. The user is using resources of the cloud, so the developers can take
advantage of its resources and provide better virtual appliances as necessary. In addition, the DaaS
can provide the familiar desktop environment of a classic operating system, thus providing the
developers the ability to use legacy or complex systems, without adapting them to web applications.

This model has been partially used in CHIC for evaluation purposes, during an evaluation workshop.
Various CHIC tools had been installed to a cloud VM which was then cloned to many instances. Users
could remotely connect to those VMs to use and evaluate the installed applications, without the
mundane task to install them locally to their PC, without the need to provide the necessary
environment, libraries and configuration. In addition, this model presents some unique advantages in
terms of the security, since the user is given access directly inside the cloud infrastructure to use
tools or data but inside a secure sandbox and not accessing from its own local environment. The only
resources that each user need was an ordinary computer such as a laptop and a network connection.
This model could be also used in the exploitation of the CHIC platform by providing DaaS to end-
users either for demonstration purposes or as an alternative to classic deployments.

3.2.4 All-in-one downloadable VM

Another deployment model that is often used, usually for demonstration purposes, is a pre-built VM

that contains all necessary tools and configurations for a user to use and evaluate a system. With this

model, similar to the DaaS, the user can use and evaluate the tools without installing and configuring

anything. By having a VM running locally the user does not need network connection and the latency

that this might impose. However, this model has drawbacks such as performance issues with running

on a virtual environment and difficulty in importing and exporting data. It does not scale up and it

could be difficult to use even for small data sets or computation load. At the same time, this model

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 12 of 50

needs from the end-user to have at least some basic knowledge of using a virtual environment and

can be frustrating and have a rather negative user experience for productive usage.

This deployment model has not been used in CHIC, but if needed on a future use case we could easily

introduce it by taking advantage of the cloud functionality. We can build VM images with the DaaS

model and export them as downloadable VMs for the end-users.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 13 of 50

4 Current Deployment View

4.1 Introduction

In this section we document the current Deployment view of the architecture, which describes the
environment where the system is deployed including the dependencies that the system has on its
runtime environment. This view captures the hardware and software environment needs of the
system, the technical environment requirements for each element, the mapping of the software
elements to the runtime environment that executes them and any other dependency to technical
resources, such as hardware or software that is required.

The technical details of the implementation of a system are not usually the main concern of its
architecture specification. These details, however, often govern and restrict many of the design
decisions of the architecture while trying to provide a feasible and functional system. Thus, for a
complex software system such as the CHIC platform it is helpful, if not necessary, to describe in detail
its Deployment View and the running environment of the system, in order to better illustrate the
technical implementation of the system and the design choices that have been made.

4.2 Network topology

The CHIC components have been installed on Virtual Machines (VMs) on the CHIC private cloud.
Some components are installed on dedicated instances of VMs while others share the same instance,
depending on the resource needs or functional needs of each component. All CHIC VMs are placed in
a dedicated subnet (virtual LAN) inside the private cloud where only CHIC instances are running, both
for development flexibility as well as security separation with the external (public) network. In Figure
1 we present the network topology of the CHIC subnet.

Figure 1 Network topology of the CHIC Virtual Machine instances (screenshot taken from the Openstack
Dashboard)

In this figure we see a list of the CHIC VMs that communicate through the chic-net (CHIC dedicated
subnet) and connect with the ext-net network (public network) of the cloud, through a virtual router
that connects both interfaces.

All VMs are assigned a local Internet Protocol (IP) address inside the subnet for the intra-cloud
communication. There is also the ability to assign a public IP address to each VM that forwards all
traffic to the local IP address, in order to allow direct communication with the public network, usually

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 14 of 50

for testing purposes and developer’s remote access. All communication with the public network
passes through a cloud firewall where incoming and outgoing traffic is restricted based on a set of
security rules, such as allowed communication ports and allowed remote IP addresses. Security rules
may be applied also to the local level (chic-net) if needed inside each VM instance, by configuring a
local firewall on each instance.

4.3 Cloud resources used for CHIC VMs

Figure 2 CHIC VM instances and their resources (screenshot from Openstack Dashboard)

In Figure 2 we take a closer look on the CHIC VM instances running in the CHIC private cloud and
some details on their assigned resources. This is not a complete list of their attached volumes (virtual
storage drives) as some VMs are assigned extra storage space by attaching additional volumes.
Below, in Figure 3, we see the complete list of volumes attached to the instances mentioned above.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 15 of 50

Figure 3 List of volumes attached to CHIC VMs (screenshot from Openstack Dashboard)

In the following section we outline the technical details for the deployment of each component of
the architecture. We follow the layered categorization of D5.1.1 for practical reasons of mapping the
components with their functionality as presented to that deliverable, although on the technical level
such distinguishing does not really matter.

4.4 User Interface layer

4.4.1 User Portal

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

Web application/framework

Operating system Windows/Linux

(currently installed on Linux, but there’s no strict
dependency or requirement)

Programming environment Java programming language,

Tomcat application server

Communication technologies or protocols with HTTP/XML/JSON/REST services

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 16 of 50

other CHIC components

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

Liferay/Tomcat/MySQL

Computational needs (estimation of hardware
needs)

Server machine running a web server. Depends
on the expected load of the portal.

Storage needs (estimation of hardware needs) 1 GB of storage space

URL (if applicable) https://portal.chic-vph.eu/

4.5 Business Logic layer

4.5.1 Hypermodelling editor

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

Web based , two-tier architecture

Operating system Cross platform, but Linux is the preferred host
Operating System for the server side.

Programming environment Clojure over the Java Virtual Machine in the
server, Javascript on the client (browser)

Communication technologies or protocols with
other CHIC components

HTTP/REST based API with JSON payload, and
message oriented communication over the
RabbitMQ message broker

Data types that it operates on Hypermodel descriptions coming from the Model
Repository, and their RDF annotations from the
CHIC Semantic infrastructure

Technical dependencies or requirements
(libraries, tools)

Clojure/Jetty application server, PostgreSQL
DBMS for persistence, Redis as a caching layer,
Nginx web server as a web reverse proxy

Computational needs (estimation of hardware Moderate requirements, a server machine with

https://portal.chic-vph.eu/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 17 of 50

needs) plenty of RAM is always preferred.

Storage needs (estimation of hardware needs) 5 GB of storage but depending on usage

URL (if applicable) N/A

4.5.2 Clinical Research Application Framework (CRAF)

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

Web application (two-tier, i.e. client side in
Browser talking to the server side over HTTP
APIs) but also a standalone application in Java
exists

Operating system Cross platform, but Linux is the preferred host
Operating System for the server side.

Programming environment Java 8 on the server side and the standalone
application, Javascript on the client side of the
web application

Communication technologies or protocols with
other CHIC components

HTTP/REST based API with JSON payload, and
message oriented communication over the
RabbitMQ message broker

Data types that it operates on Hypermodels as computational artifacts, patient
data for invoking the hypermodels, results and
visualization files for the outputs of the
executions

Technical dependencies or requirements
(libraries, tools)

Server side: Java/Jetty application server,
PostgreSQL DBMS for persistence, Redis as a
caching layer, Nginx web server as a web reverse
proxy

Client side: Javascript, Angular 2

Standalone Application: Java, Apache PDFBox

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 18 of 50

Computational needs (estimation of hardware
needs)

Server side: 8 GB of RAM

Client side/ application: 4 GB RAM

Storage needs (estimation of hardware needs) Server side: 5 GB of storage but depending on
usage

URL (if applicable) N/A

4.5.3 Hypermodelling execution framework (VPHHF)

Resource Mapping

Developer USFD - CINECA

Software type (Web application,
standalone application, service, library,
framework etc.)

Software framework

Operating system Cross-platform but the Unix/Linux release is the most
tested one.

Programming environment C++, python

Taverna workflow server is based on Java: it is used but
not developed in CHIC.

Communication technologies or protocols
with other CHIC components

REST/HTTP APIs to access the hypermodelling
framework components functionalities.

Supported protocol is HTTP/SOAP is being considered for
inclusion.

SSH protocol is used for data transfer and launch some
remote execution between the execution machines in
the private cloud.

Data types that it operates on Taverna Workflow description file and xMML coupled
model description file.

The hypermodelling framework will have also to access
models, data, and any other information necessary to
the workflow execution.

Technical dependencies or requirements The execution framework is mainly constituted by
VPHHF which is manly developed in Django webservice

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 19 of 50

(libraries, tools) framework with MySql database and few Python
components belonging to Django ecosystem.
RabbitMQ/Celery are used for event and queue based
interactions.

Taverna server orchestrates the execution of the models
and a series of Bash and Python scripts wrap every
model to make it possible to launch via a standardised
interface.

Muscle library is necessary to execute models developed
via message passing paradigm.

Computational needs (estimation of
hardware needs)

The VPH-HF is an orchestration layer. Itself it needs a
couple of cores, and maybe 1GB of RAM; to this it has to
be added all the cores and memory that the hypomodels
to be orchestrated require to execute. Taverna server
(based on Tomcat server) requires few more GiB of
memory (1GiB min). The computational power required
grow less than linearly w.r.t the number of requests per
second of workflow execution.

Storage needs (estimation of hardware
needs)

The VPH-HF orchestrates multiple hypo/hypermodels
execution that is performed in a sandbox in the local file
system. The needs in term of storage will be the same
as the hypomodels to be executed and is model
dependent.

URL (if applicable) https://sourceforge.net/projects/vphhf/

 https://github.com/INSIGNEO/VPH-HF

4.5.4 Visualization toolkit

Resource Mapping

Developer BED

Software type (Web application, standalone
application, service, library, framework etc.)

Standalone

Operating system Windows

Programming environment C++

Communication technologies or protocols with Command line arguments allow tasks to be

https://sourceforge.net/projects/vphhf/
https://github.com/INSIGNEO/VPH-HF

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 20 of 50

other CHIC components executed and data exchanged via files on local disk.

Data types that it operates on Clinical data and data from model simulation

Technical dependencies or requirements
(libraries, tools)

Open source libraries: VTK, ITK, Qt and Qwt

Computational needs (estimation of hardware
needs)

Min screen size: small laptop (about 28x18cm)

Graphics and CPU: Low to high depending on
demands.

Storage needs (estimation of hardware needs) Low

URL (if applicable) ---

4.5.5 DrEye Image processing toolkit

Resource Mapping

Developer FORTH

Software type (Web application,
standalone application, service, library,
framework etc.)

Standalone application

Operating system Windows (version 8.1 or higher)

Programming environment C# / C++ / Visual Basic .NET

Communication technologies or
protocols with other CHIC components

It interacts indirectly via user interaction with the data
repository. Currently, there is no direct communication
with the hypermodeling framework planned.

Data types that it operates on Medical images (.dcm or .mha format)

Technical dependencies or
requirements (libraries, tools)

Dr. Eye and its plugin-environment serve as a basis for the
toolkit. Moreover, it requires the Insight Registration and
Segmentation ToolKit (ITK) library and .NET framework (3.5
or higher).

Computational needs (estimation of
hardware needs)

No special requirements. A standard personal computer is
sufficient to run the application.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 21 of 50

Storage needs (estimation of hardware
needs)

N/A

URL (if applicable) http://biomodeling.ics.forth.gr/dreye

http://biomodeling.ics.forth.gr/?page_id=8

4.5.6 Biomechanical Simulator

Resource Mapping

Developer UBERN

Software type (Web
application, standalone
application, service, library,
framework etc.)

Muscle-coupled component for simulating biomechanical aspects
of tumour growth (BMS)

Operating system Linux

Programming environment Programming languages: C++, XML

Communication technologies or
protocols with other CHIC
components

Multiscale coupling library & environment (MUSCLE)

Data types that it operates on Segmentation images (mhd, mha, nii, vti), MUSCLE-provided
information

Technical dependencies or
requirements (libraries, tools)

Tools:

- FeBIO

Libraries:

- Visualisation Toolkit (VTK) [v 6.2]

- Computational Geometry Algorithms Library (CGAL) [v 4.6, with
VTK support]

- Xerces C++ XML parser [v 3.1.2]

- Multiscale coupling library & environment (MUSCLE) [v 2]

All dependencies included in packaged simulator

Computational needs
(estimation of hardware needs)

> 8GB RAM

Storage needs (estimation of
hardware needs)

--

URL (if applicable) --

http://biomodeling.ics.forth.gr/dreye
http://biomodeling.ics.forth.gr/?page_id=8

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 22 of 50

4.6 Data Integration layer

4.6.1 Model repository

Resource Mapping

Developer ICCS

Software type (Web
application, standalone
application, service, library,
framework etc.)

Web based (the User Interface part)

Operating system Cross-platform

Programming environment Programming language: Python, XML, Javascript, HTML, CSS

Database management system: MySQL community edition

Web application framework: Django

Web server: Apache HTTP server

Communication technologies or
protocols with other CHIC
components

 REST services through HTTP protocol and JSON

 Passing of messages through AMQP protocol

Data types that it operates on Models and tools (structured information and files)

Technical dependencies or
requirements (libraries, tools)

1) MySQL community edition (GPL license link:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html)

2) Django Rest Framework (Copyright (c) 2011-2016, Tom
Christie All rights reserved. Link: http://www.django-rest-
framework.org/#license)

3) djangosaml2 (Apache 2 license, link:
https://pypi.python.org/pypi/djangosaml2/)

4) dm.xmlsec.binding (BSD license, link:
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2)

5) Python 2.7 (Open Source, link:
https://www.python.org/download/releases/2.7/license/
)

6) XML security library (MIT license, link:
https://www.aleksey.com/xmlsec/)

7) Django (BSD license, link:
https://www.djangoproject.com/foundation/faq/)

8) jQuery library (MIT license, link:

http://www.django-rest-framework.org/#license
http://www.django-rest-framework.org/#license
https://pypi.python.org/pypi/djangosaml2/
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2
https://www.python.org/download/releases/2.7/license/
https://www.aleksey.com/xmlsec/
https://www.djangoproject.com/foundation/faq/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 23 of 50

https://jquery.org/license/)

9) Bootstrap Framework (MIT license, link:
http://getbootstrap.com/getting-started/)

Computational needs
(estimation of hardware needs)

 Intel Xeon E312xx (1 vCPU)

Storage needs (estimation of
hardware needs)

 60 GB

URL (if applicable) https://mr.chic-vph.eu

4.6.2 Clinical data repository

Resource Mapping

Developer UBERN

Software type (Web application,
standalone application, service,
library, framework etc.)

Web based

Operating system The Web application is running on a Microsoft Windows
Server 2012 R2 64bit.

Programming environment Programming languages: C#, Javascript, HTML, CSS

Database management system: Microsoft SQL Server 2012
R2.

Web application framework: Microsoft ASP.NET
Framework, ASP.NET MVC and ASP.NET Web API

Web server: Microsoft Internet Information Services (IIS)

Communication technologies or
protocols with other CHIC
components

REST API, JSON

Data types that it operates on Clinical data (CDISC ODM)

Imaging data (DICOM, MetaImage, Analyze, Nifti)

Genetic / molecular data (MINiML)

Histopathology data (JPEG, CSV, XML)

https://jquery.org/license/
http://getbootstrap.com/getting-started/
https://mr.chic-vph.eu/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 24 of 50

Technical dependencies or
requirements (libraries, tools)

- ASP.NET (http://www.asp.net/)

- Entity Framework

(https://github.com/aspnet/EntityFramework)

- SimpleITK (http://www.simpleitk.org/)

- ReCaptcha (https://www.google.com/recaptcha)

- Fuseki (http://jena.apache.org/)

- Fellow Oak DICOM for .NET

(https://github.com/fo-dicom/fo-dicom)

- dotNetRDF (http://dotnetrdf.org/)

- Newtonsoft Json

(http://www.newtonsoft.com/json)

- VDS.Common

(https://www.nuget.org/packages/VDS.Common/)

- jQuery (https://jquery.org/)

- Bootstrap (http://www.getbootstrap.com)

- HDF5DotNet (http://hdf5.net/)

- Statismo (https://github.com/statismo/statismo)

- FontAwesome

(http://fortawesome.github.io/Font-Awesome)

- Google Web Fonts

(https://www.google.com/fonts)

- ANTLR (http://www.antlr.org/)

- Helix Toolkit (https://github.com/helix-toolkit)

- Apache log4net

(https://logging.apache.org/log4net/)

- Modernizr (https://modernizr.com/)

- OWIN (http://owin.org/)

- RestSharp (http://restsharp.org/)

- Web Grease

(https://www.nuget.org/packages/WebGrease/)

- AngularJS (https://angularjs.org/)

- Elasticsearch, Logstash, Filebeat, Kibana

(https://www.elastic.co/de/products)

- Rdfstore, LOLS (http://open-physiology.org)

http://www.asp.net/
https://github.com/aspnet/EntityFramework
http://www.simpleitk.org/
https://www.google.com/recaptcha
http://jena.apache.org/
https://github.com/fo-dicom/fo-dicom
http://dotnetrdf.org/
http://www.newtonsoft.com/json
https://www.nuget.org/packages/VDS.Common/
https://jquery.org/
http://www.getbootstrap.com/
http://hdf5.net/
https://github.com/statismo/statismo
http://fortawesome.github.io/Font-Awesome
https://www.google.com/fonts
http://www.antlr.org/
https://github.com/helix-toolkit
https://logging.apache.org/log4net/
https://modernizr.com/
http://owin.org/
http://restsharp.org/
https://www.nuget.org/packages/WebGrease/
https://angularjs.org/
https://www.elastic.co/de/products
http://open-physiology.org/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 25 of 50

Computational needs (estimation of
hardware needs)

Production VM: 40 GB RAM, 2.9 GHz (4 sockets and 4
virtual processors)

Development VM: 8 GB RAM, 2.9 GHz (1 socket and 1
virtual processor)

Storage needs (estimation of
hardware needs)

100 GB (depending on the number of patients)

URL (if applicable) https://cdr.chic-vph.eu

https://cdr-dev-chic.ics.forth.gr

4.6.3 In silico trial repository

Resource Mapping

Developer ICCS

Software type (Web
application, standalone
application, service, library,
framework etc.)

Web based (the User Interface part)

Operating system Cross-platform

Programming environment Programming language: Python, XML, Javascript, HTML, CSS

Database management system: MySQL community edition

Web application framework: Django

Web server: Apache HTTP server

Communication technologies or
protocols with other CHIC
components

 REST services through HTTP protocol and JSON

Data types that it operates on Input data, links to hypermodels and results of model execution
(structured information and files)

Technical dependencies or
requirements (libraries, tools)

1) MySQL community edition (GPL license link:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html)

2) Django Rest Framework (Copyright (c) 2011-2016, Tom
Christie All rights reserved. Link: http://www.django-rest-
framework.org/#license)

https://cdr.chic-vph.eu/
https://cdr-dev-chic.ics.forth.gr/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.django-rest-framework.org/#license
http://www.django-rest-framework.org/#license

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 26 of 50

3) djangosaml2 (Apache 2 license, link:
https://pypi.python.org/pypi/djangosaml2/)

4) dm.xmlsec.binding (BSD license, link:
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2)

5) Python 2.7 (Open Source, link:
https://www.python.org/download/releases/2.7/license/
)

6) XML security library(MIT license, link:
https://www.aleksey.com/xmlsec/)

7) Django (BSD license, link:
https://www.djangoproject.com/foundation/faq/)

8) jQuery library (MIT license, link:
https://jquery.org/license/)

9) Bootstrap Framework (MIT license, link:
http://getbootstrap.com/getting-started/)

Computational needs
(estimation of hardware needs)

 Intel Xeon E312xx (4 vCPU)

Storage needs (estimation of
hardware needs)

 100 GB

URL (if applicable) https://istr.chic-vph.eu

4.6.4 Metadata repository

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web accessible database

Operating system Cross-platform

Programming environment N/A

Communication technologies or protocols with
other CHIC components

SPARQL endpoint or Ontology-based services
(REST)

Data types that it operates on Metadata serialized in RDF

https://pypi.python.org/pypi/djangosaml2/
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2
https://www.python.org/download/releases/2.7/license/
https://www.aleksey.com/xmlsec/
https://www.djangoproject.com/foundation/faq/
https://jquery.org/license/
http://getbootstrap.com/getting-started/
https://istr.chic-vph.eu/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 27 of 50

Technical dependencies or requirements
(libraries, tools)

TBD

Computational needs (estimation of hardware
needs)

TBD

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) Third parties backend and

https://github.com/open-physiology/rdfstore

4.6.5 Data upload tool

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

Web application, incorporated into CRAF

Operating system Any

Programming environment Javascript

Communication technologies or protocols with
other CHIC components

HTTP/REST based API with JSON payload

Data types that it operates on Patient data: CRFs, DICOM images, MIAME
compatible files of genomic data

Technical dependencies or requirements
(libraries, tools)

It’s strongly coupled with CRAF, uses DICOM
Toolkit (DCMTK,
http://dicom.offis.de/dcmtk.php.en) for the
DICOM file management

Computational needs (estimation of hardware
needs)

4 GB RAM

Storage needs (estimation of hardware needs) Nothing special, depends on the patient-related
files to be managed

URL (if applicable) NA

https://github.com/open-physiology/rdfstore
http://dicom.offis.de/dcmtk.php.en)

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 28 of 50

4.7 Security layer

The security framework is comprised of many different components, each one with its one technical
details and configuration, so, we describe each component independently of the others.

4.7.1.1 IAM (Identity and Access Management site)

Resource Mapping

Developer CUSTODIX

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

REST and SOAP Web Services

Data types that it operates on CHIC User Model

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:

https://ciam-dev-chic.custodix.com/idm

Live:

https://ciam.chic-vph.eu/idm

4.7.1.2 Idp (Identity Provider)

Resource Mapping

https://ciam-dev-chic.custodix.com/idm
https://ciam.chic-vph.eu/idm

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 29 of 50

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework
etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SAML v2 protocol

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:

https://ciam-dev-chic.custodix.com/idp

Live:

https://ciam.chic-vph.eu/idp

4.7.1.3 STS (Secure Token Service)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework
etc.)

Web service

Operating system OS with Java available

Programming environment Java

https://ciam-dev-chic.custodix.com/idp
https://ciam.chic-vph.eu/idp

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 30 of 50

Communication technologies or protocols
with other CHIC components

REST and SOAP Web Services

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:

https://ciam-dev-chic.custodix.com/sts

Live:

https://ciam.chic-vph.eu/sts

4.7.1.4 PDP (Policy Decision Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

https://ciam-dev-chic.custodix.com/sts
https://ciam.chic-vph.eu/sts

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 31 of 50

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

4.7.1.5 PAP (Policy Administration Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

4.7.1.6 PIP (Policy Information Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone Web service

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 32 of 50

application, service, library, framework etc.)

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

4.7.1.7 PEP (Policy Enforcement Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Library

Operating system

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 33 of 50

Computational needs (estimation of
hardware needs)

Storage needs (estimation of hardware
needs)

URL (if applicable)

4.7.1.8 Audit Services

Resource Mapping

Developer CUSTODIX

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

50 GB (for application code and log files)

URL (if applicable) Development:

https://audit-dev-chic.custodix.com/audit-viewer

https://audit-dev-chic.custodix.com/audit-parser

Live:

https://audit.chic-vph.eu/audit-viewer

https://audit-dev-chic.custodix.com/audit-viewer
https://audit-dev-chic.custodix.com/audit-parser
https://audit.chic-vph.eu/audit-viewer

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 34 of 50

https://audit.chic-vph.eu/audit-parser

4.7.1.9 Security Gateway

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

N/A

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

4.7.1.10 De-identification

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web application

Operating system OS with Java available

https://audit.chic-vph.eu/audit-parser

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 35 of 50

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

N/A

Computational needs (estimation of
hardware needs)

2 core

Storage needs (estimation of hardware
needs)

50 GB (for application code and log files)

URL (if applicable) Development:

https://ttp-dev-chic.custodix.com

Live:

https://ttp-chic.custodix.com

4.8 Semantics layer

4.8.1 Ontology-based semantic services

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web services

Operating system Cross-platform

Programming environment JAVA

Communication technologies or protocols with
other CHIC components

REST

Data types that it operates on N/A

https://ttp-dev-chic.custodix.com/
https://ttp-chic.custodix.com/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 36 of 50

Technical dependencies or requirements
(libraries, tools)

Metadata repository and Knowledge Base

Computational needs (estimation of hardware
needs)

N/A

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) https://github.com/open-physiology/chic

https://github.com/open-physiology/owlkb

https://github.com/open-physiology/rdfstore

4.8.2 Folksonomy semantic services

Resource Mapping

Developer BED

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application, RESTful APIs

Operating system Cross platform

Programming environment Java, MongoDB, JavaScript, JQuery, Tomcat

Communication technologies or
protocols with other CHIC components

RESTful APIs JSON

Data types that it operates on Resource URI

Technical dependencies or
requirements (libraries, tools)

Spring framework

Computational needs (estimation of
hardware needs)

2 x CPU @ 2.6GHz, RAM 8 GB

Storage needs (estimation of hardware
needs)

50GB for application, data, and logs

https://github.com/open-physiology/chic
https://github.com/open-physiology/owlkb
https://github.com/open-physiology/rdfstore

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 37 of 50

URL (if applicable) Web app: http://api.ccgv.org.uk/taggingapp/

RESTful API: http://api.ccgv.org.uk/taggingservice/tags

4.8.3 Knowledge base

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web accessible database

Operating system Cross-platform

Programming environment Java

Communication technologies or protocols with
other CHIC components

Ontology-based services (REST) and Java API

Data types that it operates on Baseline option: OWL (Ontology Web Language)

Technical dependencies or requirements
(libraries, tools)

Baseline option: OWLAPI, Reasoners

Computational needs (estimation of hardware
needs)

Intensive (Prototype needs dedicated server and
64Gb RAM)

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) https://github.com/open-physiology/owlkb

4.9 Infrastructure layer

4.9.1 Private Cloud

Resource Mapping

Developer FORTH

http://api.ccgv.org.uk/taggingapp/
http://api.ccgv.org.uk/taggingservice/tags
https://github.com/open-physiology/owlkb

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 38 of 50

Software type (Web application, standalone
application, service, library, framework etc.)

OpenStack cloud technology platform.

(Framework of tools.)

Operating system Linux

Programming environment N/A

(The software is not being developed in CHIC. It is
provided as free software under the Apache 2.0
license)

Communication technologies or protocols with
other CHIC components

Does not communicate directly with other CHIC
components. However it does provide many
different technologies for communication and
management:

REST services: JSON/XML format,

Command Line Interface (CLI) tools,

Java SDK

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

Operating System, network configuration,
hardware resources.

Computational needs (estimation of hardware
needs)

Many computer nodes (>5)

Storage needs (estimation of hardware needs) Many TBs of storage (>5)

URL (if applicable) https://www.openstack.org/

https://www.openstack.org/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 39 of 50

5 Cloud Deployment Architectures

The cloud infrastructure is the next generation of the classic data centres. It is a complex set of tools
that provides functionality to manage hardware resources in a large scale and, what’s more, to
virtualize these resources and provide it as a service to the applications and the users.

This approach provides better utilization, automation, scalability, elasticity and on-demand provision.
The cloud provides a large set of tools that manage and virtualize all different aspects of a data
centre, such as storage, computation, network, computer instances and configuration, databases,
billing, clustering, benchmarking as well as usual administrative tasks such as network configuration,
data backup, security management, identity management, quotas and many others. These tasks can
be automated or be handed over to the end-users rather than require trained administrative
personnel.

The cloud infrastructure models are often categorized as public, private or hybrid, but this
categorization focuses rather on the commercial exploitation and the security isolation of the cloud
installation, rather than the actual deployment models, the different architectural choices that a
cloud architect has to consider when designing and deploying such a complex system.

In D5.1.1 we performed an elaborate evaluation of the most prominent cloud infrastructure
technologies and based on this analysis we chose Openstack to be our technological layer, focusing
on solving the issues mentioned above. Openstack offers a wide array of deployment models that
focus and adapt to the specific needs of different architectures and below we refer some examples
that Openstack lists4 as exemplar cases to be used as models when designing and deploying a cloud
infrastructure. A reader that is interested in more details on the specific deployment architectures,
operational and technical considerations and proposed deployment models is referred to study this
Openstack reference guide for specific technical details and model configurations.

These deployment models can be used as guides when designing a cloud based architecture or when
exploring the transition of a system from the small to the large scale. Thus, in principle these models
can be used as guides also for the transition of CHIC platform from a research prototype to a large
scale production system.

5.1 General purpose

An OpenStack general purpose cloud is often considered a starting point for building a cloud
deployment. They are designed to balance the components and do not emphasize any particular
aspect of the overall computing environment. Cloud design must give equal weight to the compute,
network, and storage components. General purpose clouds are found in private, public, and hybrid
environments, lending themselves to many different use cases.

Common uses of a general purpose cloud include:

 Providing a simple database
 A web application runtime environment
 A shared application development platform
 Lab test bed

A general purpose cloud is designed to have a range of potential uses or functions; not specialized for
specific use cases. General purpose architecture is designed to address 80% of potential use cases
available. The infrastructure, in itself, is a specific use case, enabling it to be used as a base model for
the design process. General purpose clouds are designed to be platforms that are suited for general

4 http://docs.openstack.org/arch-design/

http://docs.openstack.org/arch-design/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 40 of 50

purpose applications. General purpose clouds are limited to the most basic components, but they
can include additional resources such as:

 Virtual-machine disk image library
 Raw block storage
 File or object storage
 Firewalls
 Load balancers
 IP addresses
 Network overlays or virtual local area networks (VLANs)
 Software bundles

5.2 Compute focused

Compute-focused clouds are a specialized subset of the general purpose OpenStack cloud
architecture. A compute-focused cloud specifically supports compute intensive workloads. Compute
intensive workloads may be CPU intensive, RAM intensive, or both; they are not typically storage or
network intensive.

Compute-focused workloads may include the following use cases:

 High performance computing (HPC)
 Big data analytics using Hadoop or other distributed data stores
 Continuous integration/continuous deployment (CI/CD)
 Platform-as-a-Service (PaaS)
 Signal processing for network function virtualization (NFV)

A compute-focused OpenStack cloud does not typically use raw block storage services as it does not
host applications that require persistent block storage.

5.3 Storage focused

Cloud storage is a model of data storage that stores digital data in logical pools and physical storage
that spans across multiple servers and locations. Cloud storage commonly refers to a hosted object
storage service, however the term also includes other types of data storage that are available as a
service, for example block storage.

At large scale, management of data operations is a resource intensive process for an organization.
Hierarchical storage management (HSM) systems and data grids help annotate and report a baseline
data valuation to make intelligent decisions and automate data decisions. HSM enables automated
tiering and movement, as well as orchestration of data operations.

Example applications deployed with cloud storage characteristics:

 Active archive, backups and hierarchical storage management.
 General content storage and synchronization. An example of this is private dropbox.
 Data analytics with parallel file systems.
 Unstructured data store for services. For example, social media back-end storage.
 Persistent block storage.
 Operating system and application image store.
 Media streaming.
 Databases.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 41 of 50

 Content distribution.

 Cloud storage peering.

5.4 Network focused

All OpenStack deployments depend on network communication in order to function properly due to
its service-based nature. In some cases, however, the network elevates beyond simple infrastructure.
In this section we discuss architectures that are more reliant or focused on network services. These
architectures depend on the network infrastructure and require network services that perform
reliably in order to satisfy user and application requirements.

Some possible use cases include:

Content delivery network
This includes streaming video, viewing photographs, or accessing any other cloud-based data
repository distributed to a large number of end users. Network configuration affects latency,
bandwidth, and the distribution of instances.

Network management functions
Use this cloud to provide network service functions built to support the delivery of back-end
network services such as DNS, NTP, or SNMP.

Network service offerings
Examples include VPNs, MPLS private networks, and GRE tunnels.

Web portals or web services
Web servers are a common application for cloud services. The network requires scaling out
to meet user demand and deliver web pages with a minimum latency.

High speed and high volume transactional systems
These types of applications are sensitive to network configurations. Examples include
financial systems, credit card transaction applications, and trading and other extremely high
volume systems. These systems are sensitive to network jitter and latency. Many of these
systems must access large, high performance database back ends.

High availability
These types of use cases are dependent on the proper sizing of the network to maintain
replication of data between sites for high availability. If one site becomes unavailable, the
extra sites can serve the displaced load until the original site returns to service.

Big data
Clouds used for the management and collection of big data (data ingest) have a significant
demand on network resources. Big data often uses partial replicas of the data to maintain
integrity over large distributed clouds. Other big data applications that require a large
amount of network resources are Hadoop, Cassandra, NuoDB, Riak, and other NoSQL and
distributed databases.

Virtual desktop infrastructure (VDI)
This use case is sensitive to network congestion, latency, jitter, and other network
characteristics. Like video streaming, the user experience is important. However, unlike video
streaming, caching is not an option to offset the network issues. VDI requires both upstream
and downstream traffic and cannot rely on caching for the delivery of the application to the
end user.

Voice over IP (VoIP)
This is sensitive to network congestion, latency, jitter, and other network characteristics.
VoIP has a symmetrical traffic pattern and it requires network quality of service (QoS) for
best performance. Users are sensitive to latency and jitter fluctuations and can detect them
at very low levels.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 42 of 50

Video Conference or web conference
This is sensitive to network congestion, latency, jitter, and other network characteristics.
Similar to VoIP, users are sensitive to network performance issues even at low levels.

High performance computing (HPC)
This is a complex use case that requires careful consideration of the traffic flows and usage
patterns to address the needs of cloud clusters.

5.5 Multi-site

OpenStack is capable of running in a multi-region configuration. This enables some parts of
OpenStack to effectively manage a group of sites as a single cloud. Some use cases that might
indicate a need for a multi-site deployment of OpenStack include:

 An organization with a diverse geographic footprint.
 Geo-location sensitive data.
 Data locality, in which specific data or functionality should be close to users.

5.6 Hybrid

A hybrid cloud design is one that uses more than one cloud. For example, designs that use both an
OpenStack-based private cloud and an OpenStack-based public cloud, or that use an OpenStack
cloud and a non-OpenStack cloud, are hybrid clouds.

Bursting describes the practice of creating new instances in an external cloud to alleviate capacity
issues in a private cloud.

Example scenarios suited to hybrid clouds:

 Bursting from a private cloud to a public cloud
 Disaster recovery
 Development and testing
 Federated cloud, enabling users to choose resources from multiple providers
 Supporting legacy systems as they transition to the cloud

Hybrid clouds interact with systems that are outside the control of the private cloud administrator,
and require careful architecture to prevent conflicts with hardware, software, and APIs under
external control.

5.7 Massively scalable

A massively scalable architecture is a cloud implementation that is either a very large deployment,
such as a commercial service provider might build, or one that has the capability to support user
requests for large amounts of cloud resources.

An example of this is an infrastructure in which 500 or more requests to service instances at any
given time is common. A massively scalable infrastructure fulfills such a request without exhausting
the available cloud infrastructure resources. While the high capital cost of implementing such a cloud
architecture means that it is currently in limited use, many organizations are planning for massive
scalability in the future.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 43 of 50

Services provided by a massively scalable OpenStack cloud include:

 Virtual-machine disk image library
 Raw block storage
 File or object storage
 Firewall functionality
 Load balancing functionality
 Private (non-routable) and public (floating) IP addresses
 Virtualized network topologies
 Software bundles
 Virtual compute resources

Like a general purpose cloud, the instances deployed in a massively scalable OpenStack cloud do not
necessarily use any specific aspect of the cloud offering (compute, network, or storage). As the cloud
grows in scale, the number of workloads can cause stress on all the cloud components.

5.8 Special cases

Although most OpenStack architecture designs fall into one of the seven major scenarios outlined in
other sections (compute focused, network focused, storage focused, general purpose, multi-site,
hybrid cloud, and massively scalable), there are a few use cases that do not fit into these categories.
This section discusses these specialized cases and provide some additional details and design
considerations for each use case:

 Specialized networking: describes running networking-oriented software that may involve
reading packets directly from the wire or participating in routing protocols.

 Software-defined networking (SDN): describes both running an SDN controller from within
OpenStack as well as participating in a software-defined network.

 Desktop-as-a-Service: describes running a virtualized desktop environment in a cloud
(Desktop-as-a-Service). This applies to private and public clouds.

 OpenStack on OpenStack: describes building a multi-tiered cloud by running OpenStack on
top of an OpenStack installation.

 Specialized hardware: describes the use of specialized hardware devices from within the
OpenStack environment.

5.9 Legal and security requirements

Many jurisdictions have legislative and regulatory requirements governing the storage and
management of data in cloud environments. Common areas of regulation include:

 Data retention policies ensuring storage of persistent data and records management to meet
data archival requirements.

 Data ownership policies governing the possession and responsibility for data.

 Data sovereignty policies governing the storage of data in foreign countries or otherwise
separate jurisdictions.

 Data compliance policies governing certain types of information needing to reside in certain
locations due to regulatory issues - and more importantly, cannot reside in other locations
for the same reason.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 44 of 50

An example of such legal frameworks is the data protection framework5 of the European Union that
affects the CHIC platform and the legal compliance requirements. In D5.3 we compiled a security
analysis of the operational requirements that CHIC imposes to its cloud infrastructure. The most
critical aspects of security that affect the architecture design and its technical implementation are:

 Identity management

 Authorization and Access control

 Data Placement in object storage

 Data encryption

Openstack provides tools for the necessary functionality regarding Identity Management,

Authorization and Access control and Data placement. It does not provide direct Data Encryption,

however this functionality can be achieved by using back end solutions, such as Logical Volume

Manager (LVM) encrypted volumes.

5 http://ec.europa.eu/justice/data-protection/

http://ec.europa.eu/justice/data-protection/

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 45 of 50

6 The CHIC private cloud

6.1 Introduction

The deployment of the CHIC cloud infrastructure has been described in detail in D5.3. In this chapter
we give an update regarding the current status of the private cloud deployment and we examine
alternative cloud deployment models based on those that Openstack proposes as exemplar cases of
various architectures.

6.2 Current deployment configuration

In the initial –evaluation– deployment of the CHIC private cloud, for the purpose of internal hands-on
evaluation of its applicability and appropriateness, three (3) nodes were used; One node for the
cloud controller (Cloud controller, Identity services, Network services), one node for the image
controller (Image services) and one node as compute and storage node.

During the course of the project, taking into account the additional computation and storage
requirements the initial infrastructure was extended with two additional compute and storage
nodes. By examining the usual computation load of the compute nodes we have verified that two (2)
out of three (3) compute nodes are adequate in sustaining all the load that the project has
demanded up to the present point of time. Nevertheless, the additional node was necessary, in order
to achieve better load balancing, fault tolerance, and elastic capacity to unexpected load and
computation demands.

The current hardware resources are summarized in the following table.

Server Type Configuration Services

CHIC1 Dell PowerEdge SC1425 Intel Xeon 3.0 GHz, 16 GB RAM Cloud controller, Network
controller, Dashboard

CHIC2 Dell PowerEdge SC1425 Intel Xeon 3.0 GHz, 8 GB RAM Image controller

CHIC3 Dell PowerEdge R720xd 2* Intel Xeon E5-2690 2.90 GHz, 32
cores, 256 GB RAM

Compute node, Storage
node

CHIC4 Dell PowerEdge R730xd 2* Intel Xeon E5-2690 2.90 GHz v3,
48 cores, 256 GB RAM

Compute node, Storage
node

CHIC5 Dell PowerEdge R730xd 2* Intel Xeon E5-2690 2.90 GHz v3,
48 cores, 512 GB RAM

Compute node, Storage
node

Table 1 The hardware resources of the CHIC private cloud

In total our clouds provides an accumulated computation power of 128 cores and 1 TB of RAM and
accumulated storage space of 20 TB both for VM images, VM instances and raw block storage. It
formulates a small scale private cloud that provides the basis, given the hardware resources, to scale
up to as many nodes and resources as needed.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 46 of 50

6.3 Transition of the CHIC private cloud to large scale

The CHIC private cloud in its current state is not a large scale installation that could be compared
with a commercial cloud in terms of hardware resources or number of users. However, depending on
the exploitation plans of CHIC we could envision the CHIC platform on a broader scale, hosting many
hypermodels, storing large data sets and serving a great number of users and organizations.

In such a large scale deployment it would be necessary to accordingly scale up the CHIC cloud,
forming up a Platform-as-a-Service version of CHIC. However, a transition to large scale deployment
would require appropriate cloud design based on the guidelines and best practices as suggested by
the cloud experts.

Following the categorization and terminology of chapter 5, the CHIC cloud in its current architecture
forms a general purpose cloud. It provides simple databases, web applications and services and a
shared application development platform. It is not specialized for a specific set of problems and
provides the usual basic cloud components such as virtual machines, raw block storage, IP addresses,
virtual LANs, firewalls.

A CHIC private cloud that would aim to support many organizations, many users and connect a large
number of hardware resources would have additional characteristics of some of the exemplar cloud
models mentioned in chapter 5. It would require functionality of a Storage cloud, in order to store
large volume data sets such as clinical data, imaging data, processed data and results of In Silico
trials. It would also require functionality of a Compute cloud, in order to run massive parallel
executions of models and hypermodels, as is the case in high performance computing. It would have
a broad geographic coverage, connecting organizations in different regions or countries and it would
also require the ability of geo-location of sensitive data for legal and security reasons. Thus, the
cloud would resemble a federated Multi-site cloud in which some sites would mainly serve as
Storage nodes, others would serve as Compute nodes and others as general purpose nodes hosting
identity services, metadata, model repositories etc.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 47 of 50

7 Conclusions

In the previous chapters we have explored various alternative models for the deployment of CHIC
architecture as well as different deployment models of the underlying technical infrastructure. It is
evident that the deployment of the architecture and its technical infrastructure have interdependent
design parameters; a complex system that aims to be cloud ready and have the ability to scale up
cannot have a monolithic, single-tiered architecture. Cloud utilization can be gained when the load
can be spread over several instances and failures in parts of the system can be mitigated without
affecting other parts.

Based on the fact that CHIC is a complex system requiring substantial hardware and software
resources, that are more easily managed by a cloud layer and back up support by its developers,
modelers and administrative staff, we have built the architecture on the assumption of “CHIC
platform-as-a-Service”, as opposed to the Platform-as-a-Service (PaaS) cloud model. A dimension
though that has not been discussed in detail is the operational aspects of having “local” installations
of the CHIC platform, providing “CHIC platform-as-an-Application”. What would be the requirements
or the implications if an organization, e.g. a hospital, wanted to make an in-house deployment of
CHIC in its premises? Putting aside of course for the moment the fact that CHIC still needs a clinical
evaluation and validation before used in the clinical and research.

There would be obvious implications on the architecture, concerning mainly the security
configuration and identity management services but we argue that this use case would not differ
very much compared with the deployment models we analyzed in the previous sections. It would
rather differ to the operational context and the configuration of the deployment. In essence, the
organization would still need a deployment such as

 A local private cloud, aiming to recreate the current CHIC environment.

 An all-in-one centralized installation, either to a single server or to a Virtual Machine. This
approach, as we argued before in this document, could serve mostly for evaluation and
demonstration purposes and not productive usage on a large scale.

 A distributed deployment that would share parts of the deployment with a remote CHIC
platform. Security implications would rather make difficult the deployment of such a model.

 Hiring services of a public cloud. This operational context is outside of the scope of the
current CHIC architecture due to legal restrictions and would require major modifications to
the security architecture.

An organization might not require specific parts of CHIC, such as the Hypermodelling editor, but
major components such as the Data Repository, the Hypermodelling Execution Framework and the
Identity management services (authorization, authentication etc) would be required in most cases.
An installation locally to a hospital would minimize legal and security concerns due to data locality,
but it would impose paying a cost of having double copies of the data, both on their Hospital
Information Systems and also the CHIC Clinical Data Repository. These scenarios must be examined
in conjunction with concrete exploitation scenarios in order to draw useful conclusions.

7.1 Deployment model vs. Exploitation plan

In D12.4 we have compiled a list of possible exploitation plans of CHIC and besides exploitation of
autonomous modules of CHIC, we explore the prospects of CHIC as a whole. These plans include:

 Clinical exploitation. CHIC platform could serve as a clinical support system in order to
individualize the treatment scheme and schedule for each given patient, based on their own
multiscale data.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 48 of 50

 Research exploitation. The CHIC platform could be used as a platform for in silico
experimentation in the generic biological and clinical research context (basic science
exploitation). In this exploitation track, numerous in vitro and animal testing experiments are
expected to be replaced with a less laboratory demanding and life-friendlier in silico
experiments.

 Educational exploitation. The CHIC platform could be used as educational tool in the context
of academic education (basic science, technology and medical education), general public
education (patient’s and/or parents’ education, citizen’s education and health literacy),
industry education (education from an industrial perspective), politician education,
epistemological, philosophical and social sciences education.

In some of these scenarios such as clinical and research exploitation, major organizations could
afford having local CHIC installations, in a local private cloud, since there would be concrete benefits
out of it.

In other scenarios, such as educational exploitation or occasional usage by users, we assume that a
sustainability plan would be in place, such as StaRC, so that all partners take care to sustain and
update the CHIC platform beyond the end of CHIC lifetime in order to provide access to the broader
community. In such a plan, a combined deployment-operational model would be that StarRC
provides DaaS services (Desktop as a Service) to users of the community so that they freely evaluate,
e.g. with public data, or productively utilize with their own data the functionality of CHIC. This model
could be sustained through a subscription based billing model, in addition to providing support to
individual organizations.

Finally, a deployment model that could be used for educational or research exploitation is usage of a
public cloud when no sensitive or private data are used. The public cloud hiring could be covered by
subscriptions or donations.

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 49 of 50

Appendix 1 – Abbreviations and acronyms

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CRAF Clinical Research Application Framework

CRF Case Report Form

CSS Cascading StyleSheets

DCMTK DICOM Toolkit

DICOM Digital Imaging and Communications in Medicine

DLL Dynamically Linked Library

GiB Gibibyte, 230 bytes

GB Gigabyte, 109 bytes

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

IAM Identity Access Management

IdP Identity Provider

IP Internet Protocol

ITK Insight Registration and Segmentation Toolkit

JSON Javascript Object Notation

LAN Local Area Network

MIAME Minimum information about a microarray experiment

NFW Network Function Virtualization

MUSCLE Multiscale Coupling Library and Environment

OWL Web Ontology Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPARQL SPARQL Query Language

SSH Secure Shell

Grant Agreement no. 600841

D5.1.2 – Deployment models of the CHIC technical architecture and its private cloud

Page 50 of 50

TB Terabyte, 1012 bytes

URI Uniform Resource Identifier

VLAN Virtual Local Area Network

VM Virtual Machine

VTK Visualization Toolkit

XML Extensible Markup Language

	Contents
	1 Executive Summary
	2 Introduction
	2.1 Purpose of this document
	2.2 CHIC architecture
	2.3 Deployment models of the CHIC architecture
	2.4 Deployment models of the CHIC cloud
	2.5 Structure of the deliverable

	3 Deployment Models of the CHIC architecture
	3.1 Deployment models for backend services
	3.1.1 Centralized, private cloud based
	3.1.1.1 Development
	3.1.1.2 Maintenance and administration
	3.1.1.3 Security
	3.1.1.4 Resource usage

	3.1.2 Distributed
	3.1.2.1 Development
	3.1.2.2 Maintenance and administration
	3.1.2.3 Security
	3.1.2.4 Resource usage

	3.2 Deployment models for front-end services and user interfaces
	3.2.1 Desktop applications
	3.2.2 Web based
	3.2.3 Desktop as a Service
	3.2.4 All-in-one downloadable VM

	4 Current Deployment View
	4.1 Introduction
	4.2 Network topology
	4.3 Cloud resources used for CHIC VMs
	4.4 User Interface layer
	4.4.1 User Portal

	4.5 Business Logic layer
	4.5.1 Hypermodelling editor
	4.5.2 Clinical Research Application Framework (CRAF)
	4.5.3 Hypermodelling execution framework (VPHHF)
	4.5.4 Visualization toolkit
	4.5.5 DrEye Image processing toolkit
	4.5.6 Biomechanical Simulator

	4.6 Data Integration layer
	4.6.1 Model repository
	4.6.2 Clinical data repository
	4.6.3 In silico trial repository
	4.6.4 Metadata repository
	4.6.5 Data upload tool

	4.7 Security layer
	4.7.1.1 IAM (Identity and Access Management site)
	4.7.1.2 Idp (Identity Provider)
	4.7.1.3 STS (Secure Token Service)
	4.7.1.4 PDP (Policy Decision Point)
	4.7.1.5 PAP (Policy Administration Point)
	4.7.1.6 PIP (Policy Information Point)
	4.7.1.7 PEP (Policy Enforcement Point)
	4.7.1.8 Audit Services
	4.7.1.9 Security Gateway
	4.7.1.10 De-identification

	4.8 Semantics layer
	4.8.1 Ontology-based semantic services
	4.8.2 Folksonomy semantic services
	4.8.3 Knowledge base

	4.9 Infrastructure layer
	4.9.1 Private Cloud

	5 Cloud Deployment Architectures
	5.1 General purpose
	5.2 Compute focused
	5.3 Storage focused
	5.4 Network focused
	5.5 Multi-site
	5.6 Hybrid
	5.7 Massively scalable
	5.8 Special cases
	5.9 Legal and security requirements

	6 The CHIC private cloud
	6.1 Introduction
	6.2 Current deployment configuration
	6.3 Transition of the CHIC private cloud to large scale

	7 Conclusions
	7.1 Deployment model vs. Exploitation plan
	Appendix 1 – Abbreviations and acronyms

