

Deliverable No. 5.3

Techniques to build the cloud infrastructure available
to the community

Grant Agreement No.: 600841

Deliverable No.: D5.3

Deliverable Name: Techniques to build the cloud infrastructure available to the
community

Contractual Submission Date: 31/03/2015

Actual Submission Date: 31/03/2015

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 2 of 72

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and
Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D5.3

Document name: Techniques to build the cloud infrastructure available to the
community

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

PU

Version: 1.0

Actual Submission Date: 31/03/2015

Editor:
Institution:
E-Mail:

Manolis Tsiknakis
FORTH
tsiknaki@ics.forth.gr

ABSTRACT:

This deliverable reports on the technologies, techniques and configuration needed to install,
configure, maintain and run a private cloud infrastructure for productive usage.

KEYWORD LIST:

Cloud infrastructure, OpenStack, Eucalyptus, CloudStack, VMware vSphere, virtualization,
computation, storage, security, architecture.

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 600841.

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group
specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 3 of 72

MODIFICATION CONTROL

Version Date Status Author

0.1 30/10/2014 Draft Dimitris Counalakis

0.2 12/01/2015 Draft Giorgos Zacharioudakis

0.3 10/03/2015 Draft Giorgos Zacharioudakis

0.4 24/03/2015 Draft Giorgos Zacharioudakis

0.5 27/03/2015 Draft Xia Zhao

0.6 30/03/2015 Pre-final Giorgos Zacharioudakis

1.0 31/03/2015 Final Giorgos Zacharioudakis

List of contributors

 Dimitris-Nektarios Counalakis, TEIC

 Manolis Tsiknakis, TEIC & FORTH

 Giorgos Zacharioudakis, FORTH

 Stelios Sfakianakis, FORTH

 Kostas Marias, FORTH

 Xia Zhao, BED

 Feng Dong, BED

 Elias Neri, CUSTODIX

 Georgios Stamatakos, ICCS

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 4 of 72

Contents

1 EXECUTIVE SUMMARY.. 5

1.1 PURPOSE OF THIS DOCUMENT .. 6
1.2 OVERVIEW OF THE DOCUMENT ... 7

2 EVALUATION AND COMPARISON OF CLOUD INFRASTRUCTURE TECHNOLOGIES ... 8

2.1 CLOUD TECHNOLOGIES EVALUATION .. 8
2.2 OPENSTACK .. 9
2.3 EUCALYPTUS ... 13
2.4 CLOUDSTACK .. 16
2.5 VMWARE VSPHERE ... 18
2.6 COMPARISON OF CLOUD TECHNOLOGIES ... 22

3 OPENSTACK ARCHITECTURE ... 26

3.1 INTRODUCTION ... 26
3.2 OBJECT STORAGE ... 28
3.3 OPENSTACK OBJECT STORE (SWIFT) .. 29
3.4 SWIFT: MODEL OF OPERATION .. 30
3.5 DISCUSSION .. 31

4 IMPLEMENTATION OF A PRIVATE CLOUD INFRASTRUCTURE .. 32

4.1 INTRODUCTION ... 32
4.2 SOFTWARE ... 32
4.3 NETWORK .. 33
4.4 RINGS .. 35
4.5 DISCUSSION .. 37

5 SECURITY .. 39

5.1 INTRODUCTION ... 39
5.2 IDENTITY MANAGEMENT ... 39
5.3 AUTHORIZATION AND ACCESS CONTROL ... 40
5.4 DATA ENCRYPTION ... 41
5.5 INTEGRATION WITH CHIC SECURITY FRAMEWORK .. 41

6 OPENSTACK QUICK INSTALLATION GUIDE ... 43

7 REFERENCES ... 59

APPENDIX 1 – ABBREVIATIONS AND ACRONYMS ... 66

APPENDIX 2 – LIST OF TABLES AND FIGURES .. 69

LIST OF FIGURES .. 69

LIST OF TABLES .. 69

APPENDIX 3 – OPENSTACK GUI OVERVIEW .. 70

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 5 of 72

1 Executive Summary

The CHIC project aims at developing cutting edge ICT tools, services and secure infrastructure to
foster the development of elaborate and reusable integrative models (hypermodels) in the field of
cancer diagnosis and treatment, as well as larger repositories so as to demonstrate benefits of having
both the multiscale data and the corresponding models readily available in the VPH domain. In the
course of developing these tools, both retrospective and prospective patient data will be used to test
these models as well as validate them, which brings into focus the legal and ethical requirements for
the processing of sensitive health data.

In Task 5.3 of the CHIC project we analysed the state of the art technologies in cloud computing in
order to provide a private cloud infrastructure for the support of the CHIC platform. The deployment
of this private cloud uses open source technologies with a particular focus on processing biomedical
data, with all the legal and security requirements imposed by the latter. The CHIC private cloud
infrastructure will support all the technical functionality of CHIC, as described in D5.1.1, including the
storage of data and models, the execution of hypermodels and the execution of imaging and
visualization functionality.

In this document we describe the analysis and evaluation we conducted for the selection of a cloud
technology platform, with a special focus on the special legal and security requirements of CHIC. We
describe and analyse the architecture of the chosen platform (Openstack) and we elaborate on the
security architecture and mechanisms of Openstack in order to demonstrate how the platform fulfils
the required functionality. Finally, we provide a brief installation guide with all the required
techniques and steps to install, configure and maintain such as a large scale infrastructure for
productive usage.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 6 of 72

Introduction

1.1 Purpose of this document

1.1.1 Cloud Computing

The term "Cloud Computing" implies the provisioning of computing resources, both hardware and
software, in the form of a service [1]. These services are characterized by certain qualities, such as
availability on-demand, self-service, broad-band access, high availability and rapid elasticity. The
“cloud” infrastructure technology is the evolution of traditional technologies for sharing and
managing large sets of IT resources, such as data networks, data centres and computation clusters,
and is usually characterized and distinguished to such technologies by the dynamic allocation.

1.1.2 Service models

In principle, we distinguish between four service models [11] :

 Infrastructure as a Service (IaaS): IaaS is the supply of hardware as a service, that is, servers,

net technology, storage or computation, as well as basic characteristics such as Operating

Systems and virtualization of hardware. Examples of commercial IaaS platforms are

EducationERP.net, Amazon S3-EBS-EC2, Eucalyptus, Microsoft, Oracle Coherence, OpenStack,

RightScale, 3Tera App Logic, EnStratus, Flexiscale, GoGrid CloudStatus, CampusEA.

 Platform as a Service (PaaS): At the PaaS level, the provider supplies more than just

infrastructure; i.e. an integrated set of software with all the stuff that a developer needs to

build applications, both for the developing and for the execution stages. Examples of

commercially available PaaS platforms include Google App Engine, Microsoft Azure Services,

Amazon SimpleDB, Microsoft SDS, Oracle Higher Education Constituent Hub, Amazon SQS

and more.

 Software as a Service (SaaS): In this service model the provider offers software as a service

and this was one of the first implementations of Cloud services. Examples of SaaS platforms

include the Google App, Microsoft Dynamics CRM online, Microsoft Live@edu, Business

Producivity Online Suite, Exchange Hosted Services, Microsoft Office Web Apps, CampusEAI,

EducationERP.net, Campus Management, Jaspersoft, Coupa's e-Procuiement,

 Network as a Service (NaaS) [12] : a category of cloud services where the capability provided

to the cloud service user is to use network/transport connectivity services and/or inter-cloud

network connectivity services. NaaS involves the optimization of resource allocations by

considering network and computing resources as a unified whole.

1.1.3 Deployment models

Currently, there are three deployment models for cloud computing. Based on the location and who
manages it, a cloud can be defined as:

i. Private cloud: It is deployed within an organization's infrastructure and the resources are

dedicated to the organization itself. Management and resource allocation are also controlled

in-house by the organization.

ii. Public clouds: are open to public, but resources and infrastructure if owned by the

organization providing the cloud service. Although public cloud providers often ensure

client’s data security and integrity, data control, especially for sensitive data, can always be

an issue.

iii. Hybrid clouds: they combine both public and private clouds using data and application

migration techniques.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 7 of 72

1.1.4 The CHIC cloud infrastructure

In the context of the CHIC project, due to the legal and ethical restrictions resulting from the nature
of managed information, such as clinical, genomic or imaging data of patients or otherwise sensitive
and legally restricted data, there are specific requirements to incorporate into our architecture
during the design and implementation of the CHIC technical architecture (CHIC deliverable D5.1.1).

From the technical implementation point of view, there is the need for a cloud infrastructure which
will provide the computation and storage resources for storing and processing data, as well as
models and hypermodels. These requirements call for a service model such as the Infrastructure as a
Service (IaaS), for sharing and allocating resources for deploying CHIC software modules and services.

From the legal adherence point of view, there are security requirements which impose that the
deployment model that can best serve CHIC and meet those requirements is a private cloud,
deployed and managed within the CHIC consortium, limiting and securing access to data as well as
providing audit and security mechanisms only to authorized CHIC partners.

1.2 Overview of the document

The rest of this document reports on the methodology and the techniques we have employed to
build the CHIC cloud infrastructure. In chapter 2 we document the methodology for evaluating and
selecting the cloud infrastructure technology platform to be selected amongst the most prominent
candidates. The outcome of this evaluation was to select the OpenStack technology platform. In
chapter 3 we outline the OpenStack architecture, and especially its functionality and capabilities for
data storage, since the defining parameter of selecting a private cloud deployment model was the
security requirements regarding data. In chapter 4 we present the implementation details and high
level components of building the cloud infrastructure based on the OpenStack technology and in
chapter 5 we focus on the security aspects of the cloud platform. Finally in chapter 6 we provide a
quick installation guide which can serve as manual for the deployment of the cloud. In an Appendix
of this report we provide also a brief overview of the graphical environment (Horizon) for the
managing of common tasks within OpenStack.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 8 of 72

2 Evaluation and comparison of cloud infrastructure technologies

2.1 Cloud technologies evaluation

Up to now, many cloud platform offerings exist, either deployed as public or private clouds. Both
models have advantages and disadvantages and can be more or less suitable for a specific field,
depending on the application domain to be deployed. In CHIC, the selection of the most suitable
cloud deployment model had to be made in respect to the biomedical domain and the data it holds.

There were several factors that had to be taken under consideration in order to determine which
cloud deployment model satisfies best the requirements of handling biomedical data. The most
critical characteristic of these data emerges directly from their sensitive nature and the legal
framework that governs them. Since the data in question usually derive from actual clinical data it is
critical that they be under the total control and responsibility of the cloud maintainers. Although
most public cloud providers offer attractive Service Agreements to their customers, there is no real
guarantee that their data are not subject of processing by unauthorized third-parties. Moreover,
users are not aware of the background actions performed over their data even for maintenance
purposes and again, in the case of biomedical data, cloud users usually have the obligation to keep
their data localized to specific geographic locations and comply with certain legal suits.

As a result, the most obvious selection is the one of a private cloud over the public cloud offerings. By
deploying a private cloud infrastructure, cloud maintainers can control data access, locality and
integrity and can provide guarantees for any cloud wise operation on the data.

Consequently, we opt for a cloud platform among a number of enterprise scale, open source private
cloud platform candidates. The two preliminary prerequisites, enterprise and open source, are tightly
coupled to the biomedical domain: data are growing rapidly being of the order of several hundreds
of gigabytes or terabytes and the demand for computing power is also growing respectively to
process them. On the other hand, the cost of a commercial cloud platform rises accordingly to the
size of the infrastructure and more importantly, it is limited to the design guidelines of the
production company. Since the cloud must serve the needs of a research facility and it will probably
need heavy customization in order to comply with special requirements and workflows, the
requirement for an open source solution seemed crucial.

With respect to the above, the selection was made on the basis of cloud technology adoption and
usage level with preference for open source solutions, packaging and support options that each
platform provides for various Linux distributions (native packages, updates and availability of
software repositories), the diversity of each platform and its maturity level. Furthermore, the cloud
platform must yield at least the basic service models and provide a flexible API. Licensing was
another significant parameter, since the source code of the cloud platform may be altered by the
maintainers or the application developers.

Considering the limited hardware resources available, it was not possible to deploy several cloud
platforms simultaneously in order to provide a comparative evaluation and analysis. As a result, by
comparing the packaging options and the functionality of several open source cloud platforms and
the support that each vendor provides for several Linux distributions, we ended up with the four
most promising platforms, namely OpenStack, Eucalyptus, CloudStack and VMware vSphere.
Notably, by testing vSphere we can see the performance of open source technologies vs non-open
source.

All four cloud operating systems can manage multiple cluster environments. These platforms are
enterprise scale but besides the similarities between them and their common functionality, there
also are some important differences and each platform has its own unique characteristics, strengths
and weaknesses. For example, OpenStack provides an API for applications built on top of the cloud to

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 9 of 72

access a specialized “Object Storage”, which will be analysed later, Eucalyptus is designed with
Amazon Cloud interoperability in mind, CloudStack offers a robust structure for Datacenter
organization whereas vSphere provides fast installation via USB drives.

In order to designate the qualities of OpenStack, Cloudstack, Eucalyptus and VMware vSphere, a
comparison of these products in terms of Storage, Virtualization, Networking, Management, Security
and Community/Support criteria is needed:

 Storage criteria: platforms must provide connectivity to either network block devices, or via

direct (object) storage. Fault tolerance and HA (high availability) configuration requirements

must be met.

 Virtualization criteria: with this term, criteria concerning VM provisioning, resource

management, migration, Hypervisor compatibility etc. are established.

 Network criteria: network connectivity is essential to cloud computing. A cloud platform

must be capable of either flat or VLAN networking.

 Management criteria: a cloud platform should grant for effective management facilities in

terms of logging, reporting, recovery mechanisms, high availability and hypervisors and guest

OSs management and deployment.

 Security criteria: due to the scale and the sensitivity of data, a cloud platform should provide

security mechanisms like user and key management, data encryption, auditing and reporting.

 Maturity and support criteria: a cloud platform can be developed in either a community

based environment or inside a company. Active development and support are essential to its

viability and especially for open source software, a large community of users along with the

developers are critical for the welfare of the platform.

 Performance criteria: it is crucial that any cloud platform is evaluated for its performance,

especially for storage, since it can often prove to be a bottleneck for the whole

infrastructure.

In the next sections we provide a brief description of the basic concepts and building blocks of each
software platform. We focus in the storage and public cloud interoperability options for each one.
For public cloud interoperability, we use as metric the compatibility level they provide to one of the
world’s market leader in public cloud platforms, Amazon EC2 and Amazon S3. Amazon’s EC2, is a web
service that provides resizable compute capacity in the cloud [45] and Amazon S3, provide web
services interface that can be used to store and retrieve data [46]. Both services are part of the
Amazon WEB services.

2.2 OpenStack

2.2.1 Introduction

OpenStack is a cloud operating system which, in principle, provides IaaS. It is designed to manage
data centres and has no proprietary hardware or software requirements.

OpenStack was created by NASA and Rackspace Hosting [47] back in 2010. Nowadays, a lot of
hardware and software vendors have joined the project, among them Cisco, Dell, IBM, Intel and Red
Hat [48].

OpenStack is available under the Apache License 2.0 [49] and there is a six-month release cycle from
the OpenStack community. Before each release, the community organizes the OpenStack Design
Summit [50], where developers around the globe gather to discuss the requirements for the next
release and implementation details.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 10 of 72

2.2.2 Architecture

OpenStack components are presented at Figure 1:

Figure 1 OpenStack components3

OpenStack is built upon nine different services, as shown in Table 1.

Service Codename Description

Dashboard Horizon The default WEB GUI for OpenStack

Compute Nova Handles Virtual Machine resource

Identity Keystone A framework for authentication and authorization

Network Neutron It provides “network as a service” between interface devices
(e.g., vNICs) managed by other OpenStack services (e.g., nova).

Image Service Glance Catalogue and repository service for virtual disk images

Block Storage Cinder Provides block storage services to VMs (iSCSI, FC etc.)

Object Storage Swift Provides Object storage as a distributed storage system that
can be integrated directly into applications.

Monitoring Ceilometer Monitors and meters the OpenStack cloud for billing,
benchmarking, scalability, and statistics purposes.

Orchestration Heat Orchestrates multiple composite cloud applications by using
the CloudFormation [51] template format, through both an
OpenStack-native REST API and a CloudFormation-compatible
Query API.

Table 1 OpenStack components

3 Image copied from http://applycloud.blogspot.gr/2013/05/OpenStack-components.html

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 11 of 72

Below we provide an overview of three basic components of OpenStack: Storage,
Networking and Compute.

2.2.2.1 Storage

Figure 2 OpenStack Storage Model4

The storage options of OpenStack, are of great significance. Its object storage (namely Swift)
is exposed via RESTful5 API, so that it can be integrated directly into applications. The
OpenStack object storage, has several capabilities:

 It is provided in a distributed manner, using clusters of storage servers with characteristics of

redundancy and scalability.

 It may be used as storage facility for static data, such as virtual machine images, photo

storage, email storage, backups and archives.

 Objects and files are written to multiple disk drives with multiple replicas, spread throughout

several servers.

 Storage clusters scale horizontally simply by adding new servers.

 In case of a server or hard drive failure, OpenStack replicates its content from other active

nodes to new locations in the cluster.

On the other hand, the block storage option, provides storage over iSCSI6, FC or FCoE7 protocols. In
brief:

 The block storage system manages the creation, attaching and detaching of the block devices

to servers.

 It has unified storage support for various storage platforms including Ceph, NetApp, Nexenta,

SolidFire, and Zadara [52].

4 Image copied from http://rogerluethy.wordpress.com/2011/11/16/OpenStack-object-storage-an-overview/
5 Representational State Transfer (REST) defines a set of architectural principles by which Web services are
designed with focus on a system's resources, including how resource states are addressed and transferred,
usually, over HTTP [139][140]
6 Internet Small Computer Systems Interface (iSCSI) as defined in RFC3720, “Internet Small Computer Systems
Interface (iSCSI)” [141]
7 Fiber Channel (FC) and Fiber Channel Over Ethernet (FCoE) as referenced in “Fibre Channel: Backbone - 5
revision 2.00” [142]

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 12 of 72

 Block storage is appropriate for performance sensitive scenarios such as databases,

expandable file systems, or providing a server with access to raw block level storage.

 Snapshot management provides powerful functionality for backing up data stored on block

storage volumes.

2.2.2.2 Networking

OpenStack networking of VMs can be deployed with either flat or VLAN networking. To summarize:

 OpenStack Networking manages static or dynamic IP addresses. Traffic can be dynamically

rerouted to any compute resource, which provides a level of redundancy or failover in case

of failure.

 Users are able to create their own networks and thus, control traffic

 OpenStack Networking has an extension framework allowing additional network services,

such as intrusion detection systems (IDS), load balancing, firewalls and virtual private

networks (VPN) to be deployed and managed.

2.2.2.3 Compute

OpenStack is designed to manage and automate pools of compute resources. It takes advantage of
the popular KVM [53] or Xen [54] hypervisors and it supports Intel (x86 and x86_64) [55][56], ARM
[57] and alternative hardware architectures [58].

2.2.3 Amazon EC2 and Amazon S3 support

OpenStack provides API for both EC2 and S3. In Table 2 we present a view of these APIs and their
compatibility level with Amazon services [59]:

EC2 S3

 Feature Supported Feature Supported

EC2 Query API Y List Bucket Objects Y

EC2 Soap API N Bucket ACLs Y

OpenStack API / Rackspace API Y Bucket Lifecycle N

SSL Between Components N Bucket Policy/Location N/?

Horizontal Component Scalability Y Bucket Logging/Notification N / N

Web-based UI Y Bucket Object Versions Y

Command line interface Y Bucket Versioning ?

Table 2 OpenStack EC2 and S3 API

Although OpenStack does not fully support the Amazon WEB (AWS) services API, it provides a basic
level of connectivity capable of handling virtual machine instances and storage in the Amazon Cloud.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 13 of 72

2.3 Eucalyptus

2.3.1 Introduction

“Eucalyptus is open source private cloud software for building private and hybrid clouds that are
compatible with AWS APIs. With AWS-compatibility, the open source software pools together
existing virtualized infrastructure to create private or hybrid cloud resources for compute, network,
and storage.” [60].

Eucalyptus is targeted into creating private and hybrid cloud environments in the sense of Amazon
Web Services (AWS) [61]. It incorporates compute, network and storage resources which can be
adopted to the workload.

Eucalyptus initiated as a project mainly at the Rice University and soon spread along other
institutions. Recently, in September 2014, was acquired by Hewlett-Packard.

The platform is available under the GNU Public License version 3 (GPLv3) [62] licensing model with
Proprietary relicensing.

2.3.2 Architecture

The structure of the Eucalyptus platform is presented at Figure 3:

Figure 3 Eucalyptus Components8

As one can notice, it has three layers of abstraction, the cloud, the cluster and the nodes. This
stratification differentiates the cloud operations and helps the infrastructure at the organization
level. The semantics of these layers are explained later in this text.

Eucalyptus consists of the following six components shown in Table 3.

Component Abbreviation Description

Cloud Controller CLC A web based interface and EC2 interface. It handles incoming
requests and provides administrative control and management
of the infrastructure, as long as high-level resource scheduling
and system accounting.

Walrus – Offers persistent storage to VMs

8 Picture taken from: https://www.eucalyptus.com/eucalyptus-cloud/iaas/architecture

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 14 of 72

Cluster Controller CC It acts as the front end for a cluster within a Eucalyptus cloud
and communicates with the Storage Controller and Node
Controller. It manages instance (i.e., virtual machines)
execution and Service Level Agreements (SLAs) per cluster.

Storage Controller SC It communicates with the Cluster Controller and Node
Controller and manages Eucalyptus block volumes and
snapshots to the instances within its specific cluster.

VMware Broker – Provides an AWS-compatible interface for VMware (VMware,
n.d.) environments and physically runs on the Cluster
Controller

Node Controller NC Hosts the virtual machine instances and manages the virtual
network endpoints

Table 3 Eucalyptus components

The four basic components of Eucalyptus are Cloud Controller, Walrus, Cluster Controller and Storage
Controller.

2.3.2.1 Cloud Controller

Cloud Controller offers EC2 compatible SOAP and Query interfaces. It acts as the administrative
interface for cloud management and performs high-level resource scheduling and system accounting.
CLC, handles Authentication, Accounting, Reporting and Quota Management.

2.3.2.2 Walrus

Is the equivalent to AWS Simple Storage Service (S3). It offers persistent storage to VMs and can be
used as a simple HTTP put/get Storage-as-a-Service solution. It does not have any data restrictions.

2.3.2.3 Cluster Controller

Acts as the front end for a cluster within a Eucalyptus cloud and communicates with the Storage
Controller (SC) and Node Controller (NC). The CC manages instance (i.e., virtual machines) execution
and Service Level Agreements (SLAs) per cluster.

2.3.2.4 Storage Controller

It is the equivalent to AWS Elastic Block Store (EBS). The SC communicates with the Cluster Controller
(CC) and Node Controller (NC) and manages Eucalyptus block volumes and snapshots to the instances
within its specific cluster.

2.3.3 Amazon EC2 and Amazon S3 support

Eucalyptus implements by design the Amazon specifications for EC2 and S3. It provides REST and
SOAP interface compatible with Amazon AWS [64]. Moreover, Eucalyptus is part of the AWS partner
network [65]. Eucalyptus provides full connectivity to Amazon EC2 and S3 with native API [66].

In brief, these are the AWS features supported by Eucalyptus:

 Amazon Elastic Compute Cloud (EC2)

 Amazon Elastic Block Storage (EBS)

 Amazon Machine Image (AMI)

 Amazon Simple Storage Service (S3)

 Amazon Identity and Access Management (IAM)

 Auto Scaling

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 15 of 72

 Elastic Load Balancing

 Amazon CloudWatch

2.3.4 Environment setup for feasibility tests

This section presents the evaluation that has been carried out independently based on a small scale
Eucalyptus cloud established at the site of BED. Figure 4 Computer nodes for the deployment of
Eucalyptusshows the configuration of the deployment. At the time of the deployment, Ubuntu 12.04
is used as operating system, Xen 4.1 is used as hypervisor on top of Ubuntu for virtualisation, and
Eucalyptus 3.1 open source is used as the private cloud middleware.

Figure 4 Computer nodes for the deployment of Eucalyptus

We totally used 5 machines:

 1 machine for Cloud Controller, Cluster Controller, Storage Controller and Walrus;

 1 machine for front-end client connection; and

 3 machines for Node Controller.

More Node Controller machines can be added into the configuration if required. For better
performance, it is recommended to deploy Cloud Controller, Cluster Controller, Storage Controller
and Walrus on separate machines. In the current setting, we have in total 6 cores, 34GB RAM,
2002GB disk on all Node Controllers.

Table 4 lists the maximum virtual machines we can obtain for the current configuration. The
maximum no of instances to offer column shows merely the static instance configuration, which is
more than the actual instances that can be launched. For example, although there are maximum two
c1.xlarge instances are available in the configuration, only one can be launched.

Instance type No. of CPU RAM (GB) Storage (GB) Maximum No. of
instances to offer

m1.small 1 0.25 5 10

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 16 of 72

c1.medium 1 0.5 10 10

m1.large 2 0.5 50 5

m1.xlarge 2 4 100 2

c1.xlarge 4 6 100 2

Table 4 Maximum virtual machine instances for the Eucalyptus deployment.

2.4 CloudStack

2.4.1 Introduction

CloudStack architecture is based upon a hierarchical structure which provides IaaS cloud services for
either private, public or hybrid configurations. It offers centralized management capabilities over all
cloud components (network, storage and nodes) and it also provides on-demand access to
infrastructure through a self-service portal. This technology was developed by Cloud.com and in May
2010 it was released as free software under the GPLv3 license. In 2011 the project was acquired by
Citrix, changing the licensing from GPLv3 to Apache License version 2 [49].

2.4.2 Architecture

CloudStack is organized in the form of nested components. The primary organization structure of
CloudStack is Zone. A Zone, is an organizational unit, which can be identified for example, as a single
Datacenter. Each zone consists of Pods. Pods, can be a single rack of servers in a Datacenter. Hosts
belonging to a Pod share the same subnet. Pods consist of Clusters and Clusters consist of Hosts and
their affiliated primary storage. Clusters, are an organizational structure for grouping hosts together.
It can be a pool of Xen, KVM or ESXi (VMware) hosts. Each Cluster, has its own primary storage.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 17 of 72

Figure 5 Cloudstack nested organization9

There is also another type of storage, Secondary Storage, which is shared among by all the
components of a Zone. In brief, CloudStack has 9 components as shown in Table 5.

Component Description

Hosts Machines used for provisioning services

Cluster A host group with their storage

Pod A collection of clusters

Zone A collection of pods.

Management Server
Farm

Management nodes

Primary Storage VM storage

Secondary Storage Storage for support stuff, (templates, ISO images etc)

Network A logical network structure associated with services

Table 5 Cloudstack components

2.4.3 Amazon EC2 and Amazon S3 support

CloudStack includes, as part of its API, AWS services integration. It is compatible with Amazon's EC2
and S3 services and in the current version, the related service is fully integrated in CloudStack.

CloudStack provides a translation service for AWS API calls, which are translated through this service
into its own API calls. It supports both EC2 SOAP & Query API and S3 REST API [67].

9 Picture taken from: https://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.2/html-
single/Admin_Guide/

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 18 of 72

However, in its current stable version, there are also certain limitations to be mentioned [68]:

 AWS is available only through zones with basic networking

 Elastic IP and Elastic Load Balancing are only available with Citrix NetScale device.

2.5 VMWare vSphere

VMware vSphere (formerly VMware Infrastructure 4) is VMware’s server virtualization platform for
build cloud infrastructure. VMware vShpere platform is formed by a series products and components
as shown in Figure 6, which includes core component - VMware ESXi Server, management – vCenter
Server and vSphere Client. The following is a brief introduction to the main component of VMware
vSphere.

2.5.1 VMware hypervisor (ESXi)

VMware Hypervisor is a free bare-metal hypervisor, it install/run directly from physical server and
does not require a separate operation system (OS) to be installed. It has less overhead compared to
other hypervisors which require a hosting OS. VMware vSphere used to support both ESX and ESXi,
however from version 5, it only support ESXi as its hypervisor [143].

2.5.2 VMware vCenter server

VMware vCenter server is the centralized platform for configuring and managing VMware vSphere
environments. It provides core data centre services including access control, performance monitoring
and warning managements.

2.5.3 VMware vSphere client/web client

VMware vSphere client is a windows application which connects to vCenter Server or EXSi user
interface, and web client allows user to connect to vCenter server through browsers (with plugin
installed).

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 19 of 72

Figure 6 Overall structure of VMWare vSphere10

2.5.4 vSphere virtual machine file system (VMFS)

VMFS is a high-performance cluster file system for VMware hypervisor (EXSi), and it is
optimized for Virtual machines. VMFS allow multiple vSphere hosts to access the same
storage concurrently by leverage shared storage.

2.5.5 vSphere virtual symmetric multi-processing (SMP)

Virtual SMP is a utility which allows a single virtual machine to use multiple physical processors
simultaneously.

2.5.6 vSphere vMotion/storage vMotion

VMware vMotion allows user to move an entire running virtual machine from one physical server to
another one without downtime. It also allows automate and schedule migrations within the same
datacentre. Storage vMotion allows live migration of virtual machine disk files within and across
storage arrays, which is performed at zero-downtime and without service disruption.

2.5.7 vSphere High Availability (HA)

HA monitor vSphere hosts and virtual machines to detect hardware and OS failures, and restart
virtual machine on other hosts in cluster automatically when a server outage is detected. HA reduces
application downtime by automatic restart VM and delivers the availability.

10 Picture taken from https://pubs.vmware.com/vsphere-4-esx-
vcenter/index.jsp?topic=/com.vmware.vsphere.intro.doc_41/c_vmware_infrastructure_introduction.html

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 20 of 72

2.5.8 vSphere distributed resource scheduler (DRS)/storage DRS

DRS groups vSphere hosts into resource clusters to segregate the computing demands of various
business requirements. It provides HA resources for workloads, balance workloads for optimal
performance and help scale computing resources.

2.5.9 vSphere fault tolerance (FT)

FT provides continuous availability for applications in the event of server failure. FT creates a live
shadow instance of a VM which is always up-to-date with the primary VM, in the event of outage, FT
automatically triggers failover – this ensures the shadow VM to become live and to prevent
downtime or data lose.

2.5.10 vSphere distributed switch (VDS)

VDS provides a centralized interface for configuration, monitoring and administration of VMs across
the whole data centre. It enables the same network identity when a VM is migrated between
different hosts.

2.5.11 Amazon EC2 and Amazon S3 support

VMWare has two produces, which are vCloud Automation Center [144] and vFabric Application
Director [145] that can support deployment on Amazon. Automation Center allows policy-based
provisioning across VMware-based private and public clouds, physical infrastructure, multiple
hypervisors, and Amazon Web Services. Application Director enables applications to be deployed
across multiple virtual and hybrid cloud infrastructures, including Amazon EC2.

2.5.12 Environment setup for feasibility test

During the cloud investigation, a small VMWare vSphere has been established in BED as described
below. The VMs themselves can be configured to be clustered computing, Hadoop cluster of two
VMs are configured and tested. The findings are very promising and the performance is good.
However, due to the licence cost, this cloud is not used for the consortium within CHIC.

For feasibility research, two Dell T7400 servers (with two Xeon E5410, 1T storage space, and 16G
memory each) are connected to gigabit network switch. A windows PC with vSphere client installed is
used to configure and install VMs. The basic layout the validation platform is configured as shown in
Figure 7.

The configurations of servers and networks are for validation of the VMware vSphere, so all the
resources are dedicated to the test platform, which includes 32G full-buffered memory and 2T
storage space and 16 cores of 2.33GHz CPU. For a normal VM, 4-6G memory and 1-2 cores are
allocated, which gives us 6 powerful VMs to run tests.

Regarding security, Https are always used for the vCenter server web interface access, strong
password policy are enforced to administrators and users who have access. Least rights are assigned
to various parties, this is to control the range of damage might be done with stolen credentials. For
VMs access, Linux shell access is given with only private/public key authentication allowed, while
windows are allowed to access through Remote Desktop Connections.

One of the servers has vSphere vCenter Server installed, which allows the management of the
servers from various platforms through browsers. For the validation purpose, we have carried out
following activities on above platform.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 21 of 72

Figure 7 Overall structure of VMWare vSphere

2.5.12.1 Install vSphere hypervisor on both servers

Two 1T USB drives are used to install the EXSi on both servers, and the server then boot up from the
USB drives. This allows all the hard drive capacities be used for VMs. USB access speed is not a
concern here, since all content of USB is loaded into memory after initial boot process.

2.5.12.2 Connect to EXSi hosts and install vSphere vCenter server

Windows PC is utilized to install vSphere client which connects to EXSi hosts, configure the hosts and
install vSphere vCenter Server (VM) on one of the server, which further allows the clustering and
management of hosts through web interface.

2.5.12.3 Configure both server as cloud and install Linux/Windows VMs

Configuration is done to make two server cluster together as local cloud environment, the vCenter
server allows configuration, management and monitoring in one web UI. Ubuntu Linux 12.04 LTS and
Windows Server 2012 R2 are installed as a test of the VM hosting ability.

2.5.12.4 Configure VM templates and create VM from template

To have a standard template for consortium members to work on is very important, it avoid the
configuration caused deployment issues. VMware vSphere platform support the template and
create new VM based on template very well, the interface is intuitive and friendly.

2.5.12.5 Clone and migrate VM

Clone and migrate VM within same hosts and between two different hosts are tested, the processes
are completed without any problem.

2.5.12.6 Monitoring and disaster recovery

The monitoring of VM through vCenter interface, and tested disaster situations includes one hosts
get offline and power cut of both hosts. The recovery from disaster as behaves as documented by

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 22 of 72

VMware and the downtime depends on the situations (e.g. both hosts power cut will only go live
when the power comes back again).

2.6 Comparison of cloud technologies

All four software platforms in review share the basic qualities of a cloud platform. Table 6
summarizes the basic characteristics of these platforms:

 OpenStack Eucalyptus CloudStack vSphere

General

Architecture Fragmented into
lots of “projects”

Five main components.
AWS clone

Nine main
components in
nested structure

Lots of
components
of various
functionalities

Installation RPM/DEB
packages

RPM/DEB packages RPM/DEB packages Standalone
from USB
drive, then
vCenter
Server VM

Administration Web UI, native CLI Strong CLI compatible
with EC2 API

Customizable WEB
UI and AWS
compatible API

Windows
Client, Web
UI

Security Baseline +
Keystone, user
roles

Baseline + component
registration

SSO, user roles SSO, Security
Token Service
and internal
LDAP for
Users and
Groups

High Availability Swift Ring,
multiple service
endpoints,
external load
balancers

Primary/secondary
component failover

Load balancing and
HA options

High
Availability
and Fault
Tolerant
components

Hypervisors Xen, KVM Xen, KVM, VMware Xen, KVM, VMware VMware
Hypervisor
(ESXi)

Language Python Java, C Java Assembly, C,
C++

OS Support Various Linux
distributions,
Windows and BSD

Various Linux
distributions, Windows
and BSD systems

Various Linux
distributions,
Windows and BSD

OS X Server
10.6+,
Various Linux,
MS-DOS,

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 23 of 72

systems systems Windows,
BSD, OS/2
Warp 4,
NetWare 6.x,
Solaris 10

Storage

Disk Images Yes Yes Yes Yes

Block devices iSCSI, FC iSCSI, FC iSCSI, FC iSCSI, FC

Object Storage Swift API and
Limited S3 API

S3 API Limited S3 API Yes

Fault tolerance Yes Yes Yes Yes

VM image facilities

Image service Yes Yes Yes Yes

User VM images Yes Yes Yes Yes

Amazon API Yes Yes Yes No

User UI and Management Facilities

Web Interface Yes Yes Yes Yes

Users & Quotas Yes Yes Yes Yes

Networking

Floating IPs Yes Yes Yes Yes

L2 Support,
VLANS

Yes Yes Yes Yes

DHCP Support Yes Yes Yes Yes

Table 6 Comparative evaluation of OpenStack, Eucalyptus, Cloudstack and VSphere

All four platforms provide the basic functionality of a Cloud infrastructure and support all widely used
and IT industry standards storage and network technologies. Moreover, these platforms can provide
the three basic models of operation of a Cloud platform (IaaS, PaaS and SaaS).

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 24 of 72

Figure 8 Cloud technology adoption and usage

Figure 9 Private Cloud Usage trend (2014 vs. 2013)

In terms of the level of adoption of the corresponding cloud platforms, both VMware vSphere and
OpenStack have good adoption and usage rate. In the case of private clouds, a recent (2014) survey
by RightScale [72] indicated that OpenStack is catching up VMware vSphere to have much more
preferable choice for private cloud deployment, as shown in Figure 8. A comparison of the 2014
results with the 2013 verifies the trend in private clouds (Figure 9). Although vSphere has good
performance and adoption, we opt for OpenStack in our infrastructure implementation due to
vSphere’s non-open source license issue. Additionally, due to the fact that OpenStack, CloudStack
and Eucalyptus are designed as Open Source technologies they can be extended and adjusted
accordingly to the needs of each individual setup.

As a prerequisite, a cloud platform must provide at least the required functionality for implementing
some or all of the three basic models of operation (IaaS, PaaS and SaaS). Especially in the context of
the biomedical domain, due to the sensitive nature of the biomedical data, a cloud platform must
provide enhanced security and comply with industry standards. Moreover, the size of biomedical
data grows in time as research methods advance and thus, an important factor for choosing a cloud
platform over another is the scalability in terms of storage. As biomedical data enter the big-data era,

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 25 of 72

it is desirable for a cloud platform to have integrated support and provide, as-a-Service,
interoperability with Hadoop clusters [69].

For a private cloud infrastructure, it is also critical to provide an API for public clouds. Depending on
the needs that may arise, a private cloud platform should be able to provision and manage virtual
machines and storage in public clouds.

An additional requirement established, in the context of this work, was the need for the selected
cloud platform to provide a flexible and easy to use API for developers in order to extend, customize
and deploy custom applications on top of the cloud.

In relation to this requirement, OpenStack has some major advantages over the other two open
source platforms:

i. Apart from the traditional storage options, it provides an object storage (OpenStack Swift)
functionality, with a strong and complete API which can be used to create applications
directly attached to the object storage on top of the cloud. This means that, despite the
underlying structure of the storage, which is entirely handled by the OpenStack, developers
can create applications which can store and retrieve data and metadata directly from/to the
OpenStack’s object storage.

ii. OpenStack Swift, with the introduction of Policies, can maintain data locality which can be a
requirement especially when handling Biomedical data

iii. OpenStack, has introduced project Sahara, which enables the provisioning and management
of Hadoop clusters on OpenStack [70]

iv. OpenStack provides an S3 Amazon API which enables the interoperability of an in-house,
private cloud infrastructure with Amazon’s public cloud

v. The OpenStack project continues to evolve; since the ninth OpenStack release (“Icehouse”),
it deploys new types of cloud service like desktop-as-a-service (DaaS), database-as-a-service
and more.

vi. Almost all major Linux distributions contain their own packages for OpenStack and many,
such as Redhat, extend their own cloud platforms to support interoperability with OpenStack
[71].

As a result, OpenStack has at least the same functionality as the other two open source platforms in
question and furthermore, it offers a ready to use API for creating cloud storage aware applications
and the functionality to create, extend and adopt a private cloud storage infrastructure.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 26 of 72

3 OpenStack architecture

3.1 Introduction

OpenStack consists of a number of services, which can be categorized as follows:

 Messaging services

 Authentication/Authorization services

 Network Controller services

 Computing services

 Imaging services

 Storage services

In brief, OpenStack elements communicate with each other through the Messaging Services.
Network Controller Services provide network infrastructure consisting of a combination of private
and public networks available to virtual machines and the means to connect the internal
infrastructure to the outside world. Computing Services handle virtual machines and their resources,
while Imaging and Storage Services provide images and storage devices either to virtual machines or
to the outside world.

Using OpenStack’s own terminology, its conceptual architecture is presented at the following image:

Figure 10 OpenStack architecture

All major architectural modules of OpenStack have codenames, as seen in the figure above:

 Cinder: is the block storage service of an OpenStack cloud

 Nova: is the computing service, e.g., the service responsible handling and provide

resources to VMs

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 27 of 72

 Glance: is the imaging service, which handles operating system images

 Swift: is an OpenStack specific storage service which provides Object Storage

infrastructure

 Neutron: represents the OpenStack networking portion, which consists of a set of

services responsible for providing a NaaS (Network as a Service) infrastructure

 Keystone: is the service responsible for authenticating and authorizing services and users

inside the OpenStack cloud

 Horizon: implements a graphical user interface for basic cloud operations

End users can interact with OpenStack only through Horizon or to each individual service through
their APIs. End users, or clients, are assigned into Tenants (groups of computing resources) and Roles
(structures which provide control over shared resources).

In order to interact with each OpenStack service API, one has first to authenticate through the
Identity Service. After a successful authentication, the client receives a token which in turn
authenticates the client against various OpenStack services based on its role and tenant assignment.

APIs can be accessed with the following methods:

 cURL

 OpenStack command line clients

 REST clients

 OpenStack Python SDK

The authentication and API request workflow, can be summarized as follows:

1. Authentication token request with the appropriate payload

2. Send API request including the X-Auth-Token header

3. Continue sending API requests

4. If a “401 error” arises, request new token

The payload for each request, can contain:

1. Username (type xsd:string)

2. Password (type xsd:string)

3. tenantName (type xsd:string)

4. tenantID (type: UUID)

5. token (type: UUID)

As an example, a typical cURL command for requesting a new token can be as follows:

curl -i 'http://<Server IP Address>:5000/v2.0/tokens' \

-X POST -H "Content-Type: application/json"

-H "Accept: application/json"

-d '{"auth": {"tenantName": "admin", "passwordCredentials": {"username":

"user1", "password": "usersecret"}}}'

If the request is successful, it will result to a HTTP/1.1 200 OK response and the token in the form of
"id":"token” and its expiration information.

After acquiring a valid token, more API requests can be send using the X-Auth-Token header, for
example:

curl -i -X GET http:// <Server IP Address>:35357/v2.0/tenants

 -H "User-Agent: python-keystoneclient" -H "X-Auth-Token: token"

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 28 of 72

OpenStack provides SDKs and toolkits for a variety of technologies, like Python, Java, C++ and .NET.
More information can be found at the official OpenStack Wiki pages.

3.2 Object Storage

The term “Traditional Storage” often refers to storage types that present themselves either as block
devices or in the form of file storage. In fact, with this term we imply hard disk devices, disk arrays,
directed attached storage devices or even network attached storage devices. In order to use these
devices, we rely on a volume manager and a Filesystem, or just a Filesystem built on top of the block
devices. A Filesystem is the actual point of reference for performing read and write operations on the
actual raw hardware.

In this way the storage is made available either locally on a single machine, or available to several
machines in the network via sophisticated and usually inflexible protocols, like NFS, AFS, CIFS etc. Of
course, even if the actual storage is available locally on a machine a Web Service can provide new
and more agile methods of read, write and sharing the data and thus, the available storage.

A common problem with this types of storage, is that data manipulation is limited by the Filesystem
itself, for example, read and write operations are limited to block level, security is weak (with a
limited set of access rights) or very complex using ACL’s. Moreover, sometimes expanding the
storage can be an issue and the performance improvement is questionable.

In the case of large datasets, of the order of several petabytes, both expandability and performance
are crucial.

As a result, storage cloud providers and organizations handling large amount of data often seek
alternatives. In the early 1990’s a new type of storage was introduced, object storage. Since 2005
and forward the IT industry has implemented a variety of object based devices, filesystems and
storages. Some include T10 compatible storage devices [73], filesystems like Lustre [74] and cloud
storage, like Amazon Web Services (S3) [75] and HP Cloud [76].

By design, an object storage refers to a storage architecture where data, the relevant metadata and a
unique identifier are packed together as an entity, called “object”. Unlike files, objects do not rely
under a hierarchy, but instead, they occupy a flat address space. The entire collection of these
objects form an “object store” or an “Object Storage”. Several mechanisms are deployed in an object
storage, which is responsible for handling objects and performing operations like read, write, create,
update and delete. The objects are stored into containers instead of trees (like a filesystem) and each
operation on the objects are validated through credentials. Access to object storage is usually
provided through Web Services via a RESTful API.

Interaction with data through the API is holistic, since one must read or write the entire object with a
single operation. Although this may seem a drawback, it drastically reduces the overhead of random
I/O for a single “file”, but at the same time it prohibits traditional POSIX compliant utilities to interact
with the actual data.

Another significant advantage, is that of by-design redundancy and scalability architecture of an
object storage. Almost all implementations create multiple replicas of the data as efficient as
possible, are designed to scale up beyond the PB range and implement mechanisms which handle
hardware failures.

Given the unique characteristics of an object storage, it makes it ideal for handling unstructured
data, like media files and web content but essentially unfit for relational databases or data that
demand random access within the objects.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 29 of 72

One important feature of object storage, is that it can be deployed in a mixed hardware environment
and make use of even commodity hardware which is a huge advantage over traditional hardware
especially when cost is an issue.

3.3 OpenStack Object Store (Swift)

The OpenStack cloud platform is actually a collection of individual projects. One of them is Swift,
which implements a cloud storage, distributed in a number of storage nodes, in the form of an object
storage accessible through a REST API [77] [78]. API calls are handled by a set of specialized servers
which pass the calls to the actual storage devices. The storage devices are organized into clusters and
data are evenly distributed between them.

OpenStack Swift, being a distributed storage system by design, delivers High Availability (HA), and
scalability. In order to achieve that, it uses a data structure called the “Ring” which is a modified
version of a consistent hash ring, in conjunction with multiple proxy servers, accounts and the
concepts of zones and partitions.

Due to its API, Swift can be intergraded directly into applications and features and its design has
some profound benefits:

 Can be deployed with commodity hardware

 Does not use a central database which could cause a bottleneck

 Built-in replication

 Supports the S3 API

 Direct object access

 Virtually unlimited storage

3.3.1 Authentication

Authentication is provided by the WSGI middleware or by external systems. Each client request
contains an authentication token which is validated by Swift. The authentication tokens are cached
and are valid for subsequent requests until they expire.

The token is a simple string and can be for example, a UUID or an MD5 hash. The token, is passed
into Swift using the X-Auth-Token or the X-Storage-Token header. Tokens are acquired by the clients
by presenting a set of valid credentials to an authentication service. After successful authentication,
the authentication service responds with a valid token and the account URL.

The authentication provider, apart from the user accounts, also defines roles and user types and
potentially can make use of API key tokens or x.509 SSL certificates instead of traditional credentials
[79] .

3.3.2 Object Storage data hierarchy

Objects in Swift are organized into a hierarchy, which is defined by the Account, Container and the
Object:

 Account: the account is created by the service provider and defines a namespace for the

Containers.

 Containers: containers, define a namespace and control access to Objects with Access

Control Lists (ACL).

 Objects: objects contain the actual data and possibly a set of custom metadata.

Interaction with Swift, uses a hierarchy defined by the Account, the Container and the Object. Each
object is accessible with a unique URL of the form:

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 30 of 72

http://servername/v1/{account}/{container}/{object}

The URL contains the service endpoint (the address where the request is to be sent), and the
resource path which contains the location of the object. The cluster location is defined as
“servername” and the resource path as “v1/account/container/object”.

In brief, the account, container and object relationship is illustrated at Figure 11:

3.4 Swift: model of operation

In order to achieve this model of operation, the OpenStack is built on top of three basic components,
servers, processes and rings:

3.4.1 Servers

There are four different servers:

 Proxy servers: the handle the incoming API requests to perform several operations on

objects.

 Account servers: are responsible of managing the accounts related to the objects.

 Container servers: they handle groups of objects which are organized into containers.

 Object servers: the servers operating directly on the objects and handle the interoperability

with the underlying filesystems.

3.4.2 Processes

Several process are involved into data replication, data consistency operations handling hardware
failures and so on.

3.4.3 Rings

Rings, are defined as mapping between the physical location of objects and objects’ logical names.
Rings in Swift, are internal structures which keep track of the location of objects, including the
storage node and disks where the data resign.

Account

Container Container

Objects Objects

Figure 11: Account-Container-Object hierarchy

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 31 of 72

All three components result into a cluster of machines, often called Swift Cluster, which operates as
illustrated in Figure 12:

The proxy server receives the API calls from the clients and directs the calls to the appropriate Object
Server which operates on the Storage Node. Given the structure of the object URL, the proxy server
is capable of determining the object location from the container portion of the URL. Containers in
Swift are tightly coupled with Rings, which are the actual holders of the information concerning the
location of each object.
Data integrity and High Availability is mainly achieved with data replication into multiple storage
servers inside a Ring. For better efficiency, Swift uses Zones which provide data isolation, in the sense
that, replication takes place across zones and thus, in case of hardware failure in a zone, other
replicas in other zones can serve the correct data back to the clients.

The replication system of Swift is based on the concept of Partitions. A Partition, is a collection of
data like container and account databases and objects and they are implemented with traditional
directories with the corresponded hash table of what it contains.

3.5 Discussion

OpenStack is a collection of several projects which constitute a fully featured cloud platform.
Although most of these projects feature independent characteristics, they promote, through an
efficient API, interoperability and present their functionality as part of a whole.

OpenStack, uses a messaging system for service connectivity and provides a common identity
management service for authentication and authorization purposes. Each service has its own API
through which it inter-operates with other services, featuring a RESTful interface, also available to
end users outside the cloud infrastructure.

Apart from the traditional storage options OpenStack comes with its own object storage, solution,
Swift, which has its own RESTful API capable of providing the means to developers to implement
cloud storage applications on top of the cloud infrastructure. Furthermore, the Swift structure,
promotes scalability, facilitates load balancing and redundancy operations and thus permits the
implementation of an enterprise scale cloud storage.

Proxy server

API calls

Ring

Storage
Node

Storage
Node

Storage
Node

Figure 12 Swift cluster operation

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 32 of 72

4 Implementation of a private cloud infrastructure

4.1 Introduction

Our implementation of a private cloud infrastructure involved the usage of several machines. Due to
security and regulatory requirements, the IP addresses, the domain names and other technical
details of the real machines involved in this setup have been masqueraded with randomly selected
private Class B networks and hostnames.

The implementation of a cloud infrastructure requires a large number of physical machines in order
to deploy the full extent of its features. The implementation of the CHIC private cloud was based on a
development setup consisting of a limited amount of hardware resources, compared to a cloud of
commercial scale, and due to this fact an incremental process of infrastructure deployment was
chosen in order to gradually reach a stable and robust installation. After elaborate testing, the initial
development infrastructure was promoted to productive usage and is gradually expanded with
additional hardware resources based on the needs of the project and the requirements of the cloud
users.

In order to deploy OpenStack version 9 (codename: Icehouse) we used several server machines,
mainly of the following type:

 Dell PowerEdge SC1425, dual CPU Xeon 3.00

 Dell PowerEdge 720XD, dual CPU E5-2690

 A number of PCs with commodity hardware implementing a portion of Swift Object Storage

All machines involved in the storage portion of the cloud were equipped with RAID controllers and

enough number of physical disks which can deliver hundreds of thousands of IOPS and a bandwidth

of at least 500 MB/sec in order to eliminate possible bottlenecks.

For the network configuration on the other hand, due to hardware limitations we used 1Gbps

network cards without bonding which would multiply the available bandwidth for read and write

operations.

4.2 Software

We implemented a multi-machine/multi-controller model of operation, without redundancy due to
the lack of additional nodes. Our setup is defined as follows:

 One node providing Keystone, Glance and Messaging services

 One dedicated Network Controller node providing the Neutron services

 One node responsible for providing block and object storage services (Cinder and Swift)

along with the Compute Services (Nova)

An in-depth look at our implementation can be as shown in Figure 14:

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 33 of 72

Figure 14 CHIC OpenStack deployment architecture11

As one can notice, at least 3 internal networks are needed in addition to a public/external network.
For the current implementation, we used 3 separate VLANs, 2 with private address space and 1 with
public since the scale of the implementation permits us of a more modest configuration. Another
significant point in this setup, is that all VM traffic is routed through the Network Controller node
which acts a router machine and also provides a full-scale firewall for the virtual machines. In fact,
OpenStack defines a set of firewall rules based on Linux IPtables and Open vSwitch flows [85]. These
rules, are used on conjunction with Neutron security groups, which provide a complex but efficient
way to establish security levels and access restrictions either to virtual machines or groups of
resources [86].

By default, OpenStack uses Open vSwitch for implementing the network infrastructure. OpenStack
networking built upon Open vSwitch provides two options for creating virtual networks:

1. Generic Routing Encapsulation (GRE) and

2. Virtual LANs (VLANs)

The implementation of our choice for creating virtual networks with Open vSwitch was VLAN, due to
its plain and clean configuration it requires. GRE tunnels on the other hand, although are commonly
used especially in many VPNs, usually need special tuning since the tunnelling function itself has an
additional overhead over the actual data.

4.3 Network

We deployed OpenStack on three machines running Ubuntu 12.04.4 LTS with the latest official
updates. For the network setup, we used three VLANs, tagged as 510, 511 and 512. VLAN 510 is a
public VLAN and VLANs 511 and 512 are used internally by OpenStack. These VLANs were attached to
the nodes with VLAN interfaces as follows:

Each machine has a VLAN interface, namely eth0.510 with no IP address. This interface is bridged to
interface namely br-ex, which carries the public IP address of the node and used as a “gateway”
interface by OpenStack in order to route all VM traffic from the internal networks to the outside
world. Two additional VLAN interfaces are enabled on each node for VLAN 511 and 512 (eth0.511

11 Picture taken from: http://docs.OpenStack.org/icehouse/install-guide/install/apt/content/ch_overview.html

http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 34 of 72

and eth1.512), with network addresses 10.1.1.0/24 and 10.1.2.0/24 respectively. Network
10.1.1.0/24 is used as both the management and data network and 10.1.2.0/24 handles only virtual
machine traffic.

The instances of the virtual machines running in OpenStack, have IP addresses allocated in the
10.1.1.0/24 network. Each virtual machine owns one or more virtual network interfaces which are
bridged to the default bridge interface of OpenStack, namely br-int. This particular interface is
enabled on each compute and network controller node (just one in our case). In this way, the traffic
from every virtual machine is carried out through this network interfaces (br-int) to the network
controller node(s) which in turn routes the traffic to br-ex and to the outside world.

In the present study, just one internal network was created for the virtual machines, although more
should have been created in real world scenarios, so that, traffic from separate projects would be
isolated in different logical networks, providing a secure environment for the virtual machines.

A network diagram of the current implementation is presented at Figure 15:

Figure 15 CHIC cloud cluster network diagram

The network topology, as visualized by OpenStack itself, is presented in Figure 16.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 35 of 72

Figure 16 CHIC cloud network topology

Network net01 is the internal network of the virtual machines. On this network are allocated the
private IP addresses of the virtual machine. Multiple internal networks can be defined in the future,
providing separate address spaces to each project. Each instance (virtual machine) gets its own IP
address automatically from the DHCP service which runs on the network controller node.

The router01, is a router device which connects all virtual networks together and routes the traffic to
or from the external network. This is actually a virtual device instantiated by the Open vSwitch on the
network controller node.

 Multiple virtual routers and networks can be defined for every distinct project or group of instances
running on OpenStack compute nodes.

Since all VM traffic is routed through the network controller node, certain rules for inbound and
outbound traffic can be applied. For this purpose, OpenStack has an embedded mechanism for
defining and applying firewall rules which are defined as “Security Groups”. For this implementation
we have slightly altered the default security group allowing traffic to virtual machine ports 80 (HTTP),
443(HTTPS) and 3389 (RDP) for security reasons.

4.4 Rings

For our initial deployment of the cloud storage and in order to implement different policies for
potentially different types of data, we created four object rings and for two different sites (SiteA and
SiteB), emulating different geographic locations for testing different security configurations:

1. A default ring which holds all the available storage devices at all locations:

/etc/Swift/object.ring.gz, build version 20

1024 partitions, 3.000000 replicas, 1 regions, 8 zones, 8 devices, 0.00 balance

The minimum number of hours before a partition can be reassigned is 1

id region zone ip port replication ip replication port name weight partitions balance meta

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 36 of 72

0 1 1 10.1.1.10 6010 10.1.1.10 6010 sdb1 1.00 384 0.00

1 1 2 10.1.1.20 6010 10.1.1.20 6010 sdb1 1.00 384 0.00

2 1 3 10.1.1.30 6010 10.1.1.30 6010 sdb1 1.00 384 0.00

3 1 4 10.1.1.40 6010 10.1.1.40 6010 sdb1 1.00 384 0.00

4 1 5 10.1.2.10 6010 10.1.2.10 6010 sdb1 1.00 384 0.00

5 1 6 10.1.2.30 6010 10.1.2.20 6010 sdb1 1.00 384 0.00

6 1 7 10.1.2.30 6010 10.1.2.30 6010 sdb1 1.00 384 0.00

7 1 8 10.1.2.40 6010 10.1.2.40 6010 sdb1 1.00 384 0.00

This ring has 3 replicas 1 region and 8 zones on 8 different devices. We kept the number of zones
equal to the number of devices, in order to achieve the maximum diversity in data placement.

2. One ring for SiteA:

/etc/Swift/object-9.ring.gz, build version 20

1024 partitions, 3.000000 replicas, 1 regions, 4 zones, 4 devices, 0.00 balance

The minimum number of hours before a partition can be reassigned is 1

id region zone ip port replication ip replication port name weight partitions balance meta

1 1 1 10.1.2.10 6010 10.1.2.10 6010 sdb1 1.00 384 0.00

2 1 2 10.1.2.30 6010 10.1.2.20 6010 sdb1 1.00 384 0.00

3 1 3 10.1.2.30 6010 10.1.2.30 6010 sdb1 1.00 384 0.00

4 1 4 10.1.2.40 6010 10.1.2.40 6010 sdb1 1.00 384 0.00

This ring has 3 replicas 1 region and 4 zones on 4 different devices and represents a storage location
for crucial data where more replicas are needed.

3. One ring for SiteB:

/etc/Swift/object-1.ring.gz, build version 5

1024 partitions, 2.000000 replicas, 1 regions, 4 zones, 4 devices, 0.00 balance

The minimum number of hours before a partition can be reassigned is 1

id region zone ip port replication ip replication port name weight partitions balance meta

0 1 1 10.1.1.10 6010 10.1.1.10 6010 sdb1 1.00 384 0.00

1 1 2 10.1.1.20 6010 10.1.1.20 6010 sdb1 1.00 384 0.00

2 1 3 10.1.1.30 6010 10.1.1.30 6010 sdb1 1.00 384 0.00

3 1 4 10.1.1.40 6010 10.1.1.40 6010 sdb1 1.00 384 0.00

This ring has 2 replicas 1 region and 4 zones on 4 different devices. It represents a storage location
for non-crucial data that can be reproduced easily and fast and do not require three replicas.

4. A ring which holds all the available storage devices divided into 2 regions and 4 zones:

/etc/Swift/object-10.ring.gz, build version 4

1024 partitions, 3.000000 replicas, 2 regions, 4 zones, 8 devices, 0.00 balance

The minimum number of hours before a partition can be reassigned is 1

id region zone ip port replication ip replication port name weight partitions balance meta

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 37 of 72

0 1 1 10.1.1.10 6010 10.1.1.10 6010 sdb1 1.00 384 0.00

1 1 2 10.1.1.20 6010 10.1.1.20 6010 sdb1 1.00 384 0.00

2 1 3 10.1.1.30 6010 10.1.1.30 6010 sdb1 1.00 384 0.00

3 1 4 10.1.1.40 6010 10.1.1.40 6010 sdb1 1.00 384 0.00

4 2 1 10.1.2.10 6010 10.1.2.10 6010 sdb1 1.00 384 0.00

5 2 2 10.1.2.30 6010 10.1.2.20 6010 sdb1 1.00 384 0.00

6 2 3 10.1.2.30 6010 10.1.2.30 6010 sdb1 1.00 384 0.00

7 2 4 10.1.2.40 6010 10.1.2.40 6010 sdb1 1.00 384 0.00

This ring has 3 replicas 2 region and 4 zones on 8 different devices, which is essentially a ring split in 2
regions to emulate storage nodes in different data centres.

We also created some more rings just for benchmarking purposes, with the following characteristics:

 3 replicas, 2 regions, 2 zones, 8 devices

 3 replicas, 1 regions, 1 zones, 8 devices

 3 replicas, 1 regions, 1 zones, 4 devices

 3 replicas, 1 regions, 2 zones, 4 devices

 2 replicas, 2 regions, 2 zones, 8 devices

 2 replicas, 1 regions, 1 zones, 8 devices

 2 replicas, 1 regions, 1 zones, 4 devices

 2 replicas, 1 regions, 2 zones, 4 devices

The above rings represent different setups where the number of devices, zones and replicas varies.
These setups, could help evaluate the effect of different configurations in terms of performance and
failure scenarios.

Although we did not have the capability of using extra hardware components, like multiple Ethernet
switches and different proxy servers for the object storage, it is recommended that when
implementing such setups, non-blocking communication between the storage nodes should be
enabled in order to eliminate possible performance degradation due to data transfer or sync
operations.

4.5 Discussion

For this deployment, several nodes were used in order to implement different policies on Swift rings
and emulate real world scenarios where data could often spread into different data centres, usually
geographically isolated.

In this setup we took advantage of the network isolation that OpenStack provides, to create different
networks for different projects and thus, isolate traffic between the virtual machines. Due to the
limited hardware resources available, we only used three individual machines for the three major
service roles, controller, network and storage. For the cloud portion of our setup, we deployed a
SAIO installation, in which one machine emulated four storage nodes and we also used three more
nodes in a different data centre in order to examine the behaviour of the cloud when using remote
locations as part of the infrastructure. Finally, we tried to deploy high performance computing
characteristics to our cloud, using several virtual machines as compute nodes and a dedicated virtual
machine as management node. Unfortunately, the virtualization overhead resulted in degraded
performance and the lack of additional hardware resources, which for example, may be used directly
from the guest operating system taking advantage of the PCIe pass through livrtid option [95], forced
us away from this direction.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 38 of 72

However, despite all the drawbacks, we ended up with a fully functional cloud platform which
provided IaaS and NaaS service models along with an independent cloud storage service.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 39 of 72

5 Security

5.1 Introduction

It is outside the purpose of this document to provide a full and comprehensive OpenStack security
analysis. In this section we provide an analysis of a few basic aspects of security:

 Identity management

 Authorization and Access control

 Data encryption

In addition we refer to how the cloud security mechanisms could be integrated with the CHIC

platform security framework.

5.2 Identity Management

The identity service in OpenStack performs user management and provides a list of the available
services and their API endpoints.

Internally, OpenStack uses the concepts of users, tenants, domains, regions, endpoints, services and
roles. With these concepts, OpenStack virtually isolates system resources, group together users and
resources and controls access to services.

Apart from users and services which are essentially self-explanatory concepts, we need to provide a
brief introduction for the rest:

 Tenants: is a configurable virtual container which isolates resources and identity objects. It

usually represent users and their relevant resources

 Endpoint: the network address of an OpenStack service in URL format

 Domain: can represent an organization, a company or an individual and provide

administrative boundaries to the Keystone service

 Region: represents physically or virtually isolated resources inside a domain

 Role: a set of privileges which apply to users

Most commonly, a mapping is performed between tenants, users, roles and permissions. Each
available resource must be first allocated to tenants. Tenant users can access this resource if they
hold the corresponding role and have the appropriate permissions.

OpenStack uses a pluggable authentication system, in the sense that it delegates control of
identification to external providers, most commonly the OpenStack Keystone.

Keystone performs user and their relevant permissions tracking, provides a catalog of available
services and API endpoints and issues tokens for the API calls.

In Figure 17, we visualize the Keystone operation which in brief, is a series of identification retrieval
based on valid credentials, a token issue and authorization of OpenStack services after a successful
authentication check.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 40 of 72

Figure 17 Keystone identity Manager12

Keystone provides integration with several back ends, like Pluggable Authentication Module (PAM)
and Lightweight Directory Access Protocol (LDAP). Although the default storage option for
identification information is SQL databases, like SQlite3 or MySQL, the architecture of keystone
enables proxying external identification systems like OAuth [101], SAML [99] or OpenID [100].

5.3 Authorization and Access Control

The design of the authorization and access control model of OpenStack is heavily based on tokens.
Resources can be successfully accessed with a valid token. OpenStack deploys a number of
mechanisms to handle tokens, like an expiration system, revocation procedures and PKI store.

Internally, OpenStack uses the concepts of users, tenants, domains, regions, endpoints, services and
roles. With these concepts, OpenStack virtually isolates system resources, groups users and
resources together and controls access to services.

In principle, any Web service exposed to the Internet may be a subject of malicious attacks and
possibly expose weaknesses, which may prove fatal to the underlying infrastructure. Several
mechanisms have been deployed in OpenStack in order to minimize the threats, like sanitization of
input in API calls, secure communications of the service endpoints over SSL connections, a PKI
infrastructure and more.

To enhance security, the Identity service in OpenStack operates along with a kind of policy
enforcement, since services in OpenStack acquire policy rules associated with the resources this
service provides.

Most OpenStack projects implement Role Based Access Control (RBAC) and Role Based Security [102],
which was standardized by ANSI (ANSI INCITS 359-2004). As an example the Identity API v3 of
OpenStack, uses a JSON encoded policy file which contains declarations of the form [103]:

12 Picture taken from: http://docs.OpenStack.org/admin-guide-cloud/content/keystone-concepts.html

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 41 of 72

API_NAME: RULE_STATEMENT or MATCH_STATEMENT

Where:

 RULE_STATEMENT: a RULE_STATEMENT or a MATCH_STATEMENT

 MATCH_STATEMENT: is a set of identifiers that must match between the token provided

by the caller of the API and the parameters or target entities of the API call in question. A

MATCH_STATEMENT is of the form:

ATTRIB_FROM_TOKEN: CONSTANT or ATTRIB_RELATED_TO_API_CALL

In order for OpenStack to comply with security standards, contributors from IBM have provided
auditing functionality to OpenStack with the MTF Cloud Auditing Data Federation (CADF) standard
[104].

5.4 Data Encryption

Data are not encrypted when stored in Swift. Although data encryption is a default behaviour in
Swift, it is part of its functionality, for both storing and transferring data over the internet. This
concept might prevent unauthorized access to the actual data, so that, even if cloud’s security is
compromised, a potential attacker will not be able to investigate, read or process user files. Even if a
malicious action is not the case, storing unencrypted data on storage devices are at the disposal of
the administrator of the storage. This can break legal and trust relationships and compromise the
service.

In the case of biomedical data, data encryption can increase the level of data protection and prevent
unauthorized access to sensitive information. Although server-side encryption seems a possibility, in
cases where datasets of several GBs are involved, it may not be an optimal solution.

Data encryption can be applied to several levels:

 Swift object storage entities

 Data over the network

 Volumes residing on block storage

Encrypted network communication for both API calls and data transfer can be initiated with IPsec
and tunnelling techniques [107]. Volume encryption can be achieved by selecting the appropriate
back end solution, like Logical Volume Manager (LVM) [108] [109] encrypted volumes [110].

Object storage does not implement server side encryption in its upstream version, but modified and
fully operational, open source Swift branches exist, which provide this functionality [111][112].

5.5 Integration with CHIC security framework

In section 5.2 we referred to the identity management mechanisms that are supported by
OpenStack, such as SAML, OpenID and OAuth. In the CHIC security framework we also use SAML for
the identity management, via a dedicated Identity Management service (CHIC SAML IDP), so an
integration of those two mechanisms could be easily achieved based on this standard to allow a
single identity management service for all the users. This integration has not been implemented in
the initial phase of the cloud infrastructure deployment as we have to investigate the maturity and
robustness of such an integration without compromising neither the functionality nor the security of
both services. In addition, we lack of any real usage scenario that would drive such an integration in
the basis of user requirements, because all cloud resources are allocated via the usage of Virtual

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 42 of 72

Machines (VMs) in the current setup, so there isn’t any actual necessity to integrate the access to
CHIC services with the access to the underlying, virtual or physical, computing resources.

Another field of possible integration between the security framework of CHIC and the cloud
infrastructure is the auditing services, which could be extended to include the information of
accessing the cloud resources. The audit logs of the cloud infrastructure are currently held and
maintained separately of the CHIC auditing services, so an integration of them would allow to easily
filter and examine access logs and reveal audit trails, either for performance enhancement or
adherence to legal requirements. This task will be investigated during the course of the CHIC project
for the feasibility and actual end-user functionality.

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 43 of 72

6 OpenStack quick installation guide

The following text is based on the official OpenStack Ubuntu 12.04.4 LTS / 14.04 LTS installation
guide, adapted to reflect our own deployment configuration. For extensive and up-to-date
documentation it is recommended that the users or administrators refer to the official installation
manual, as this document only intends to provide a quick and brief guide.

This guide assumes that we have at least three machines available and that we have configured their
network interfaces as follows:

 Controller node: VLAN interfaces eth0.510 (192.168.1.10), eth0.511 (10.1.1.10), eth1.512

(10.1.2.10)

 Network Controller node: VLAN interfaces eth0.510 (no IP), eth0.511 (10.1.1.11), eth1.512

(10.1.2.11) – bridge interfaces, br-ex (192.168.1.11), br-int (no IP). Interfaces eth0.510 and

br-ex should be bridged.

 Compute node: VLAN interfaces eth0.510 (192.168.1.12), eth0.511 (10.1.1.12) and eth1.512

(10.1.2.12) – bridge br-int (no IP).

It is also crucial that clocks are synced on all nodes so an NTP service must be enabled and configured
accordingly.

We are going to use a separate account for each service OpenStack runs, and each service requires a
database backend. We will install MySQL on the controller node, create a database for each service
and the corresponding database users:

Database name Database user Related service

cinder cinder Block storage

dash dash Horizon

glance Glance Imaging service

keystone Keystone Identity service

neutron Neutron Networking service

nova nova Compute service

Note: services running on different nodes, other than the controller node which runs the database
will connect remotely to this database.

Before starting the installation of the various components, we also create the service users for each
OpenStack service:

keystone user-create --name=glance --pass=GLANCE_PASS \

 --email=glance@example.com

keystone user-role-add --user=glance --tenant=service --role=admin

keystone user-create --name=nova --pass=NOVA_PASS --email=nova@example.com

keystone user-role-add --user=nova --tenant=service --role=admin

keystone user-create --name=cinder --pass=CINDER_PASS \

-- mail=cinder@example.com

keystone user-role-add --user=cinder --tenant=service --role=admin

keystone user-create --name=neutron --pass=NEUTRON_PASS \

--email=neutron@example.com

keystone user-role-add --user=neutron --tenant=service --role=admin

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 44 of 72

keystone user-create --name=nova --pass=NOVA_PASS --email=nova@example.com

keystone user-role-add --user=nova --tenant=service --role=admin

I. Step 1: Install OpenStack repositories and required software

The following commands must be executed on all three nodes:

apt-get install python-software-properties

add-apt-repository cloud-archive:icehouse

apt-get update && apt-get dist-upgrade

reboot

II. Step 2: Controller node setup

Install the identity service (keystone):

apt-get install keystone

Configure the identity service (/etc/keystone/keystone.conf):

[DEFAULT]
admin_token = XXXXXXXXXXXX
log_file = keystone.log
log_dir = /var/log/keystone
[sql]
connection = mysql://keystone:XXXXXXXXXXXX@localhost/keystone
[identity]
driver = keystone.identity.backends.sql.Identity
[credential]
driver = keystone.credential.backends.sql.Credential
[trust]
driver = keystone.trust.backends.sql.Trust
[os_inherit]
[catalog]
driver = keystone.catalog.backends.sql.Catalog
[endpoint_filter]
[token]
driver = keystone.token.backends.sql.Token
[cache]
[policy]
driver = keystone.policy.backends.sql.Policy
[ec2]
driver = keystone.contrib.ec2.backends.kvs.Ec2
[assignment]
[oauth1]
[ssl]
[signing]
[ldap]
[auth]
methods = external,password,token,oauth1
password = keystone.auth.plugins.password.Password
token = keystone.auth.plugins.token.Token
oauth1 = keystone.auth.plugins.oauth1.OAuth
[paste_deploy]
config_file = keystone-paste.ini

Next, we need to create users, roles and tenants:

keystone tenant-create --name=admin --description="Admin Tenant"

keystone tenant-create --name=service --description="Service Tenant"

keystone user-create --name=admin --pass=ADMIN_PASS --email=admin@example.com

keystone role-create --name=admin

keystone user-role-add --user=admin --tenant=admin --role=admin

mailto:--email=admin@example.com

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 45 of 72

The next step, is to create services and API endpoints. All OpenStack services must be registered to
the identity service along with their service endpoints. The endpoints are used for accessing the
OpenStack services either internally or from external clients:

keystone service-create --name=keystone --type=identity --description="Keystone

Identity Service"

keystone endpoint-create \

 --service-id=the_service_id_above \

 --publicurl=http://controller:5000/v2.0 \

 --internalurl=http://controller:5000/v2.0 \

 --adminurl=http://controller:35357/v2.0

Imaging service is also installed on the controller node:

apt-get install glance python-glanceclient

Configure the imaging service /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf):

/etc/glance/glance-api.conf:

[DEFAULT]
admin_token = XXXXXXXXXXXX
log_file = keystone.log
log_dir = /var/log/keystone
[sql]
connection = mysql://keystone: XXXXXXXXXXXX @localhost/keystone
[identity]
driver = keystone.identity.backends.sql.Identity
[credential]
driver = keystone.credential.backends.sql.Credential
[trust]
rbd_store_ceph_conf = /etc/ceph/ceph.conf
rbd_store_user = glance
rbd_store_pool = images
rbd_store_chunk_size = 8
sheepdog_store_address = 10.1.1.10
sheepdog_store_port = 7000
sheepdog_store_chunk_size = 64
delayed_delete = False
scrub_time = 43200
scrubber_datadir = /var/lib/glance/scrubber
image_cache_dir = /var/lib/glance/image-cache/
[keystone_authtoken]
auth_uri = http://10.1.1.10:5000
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = glance
admin_password = XXXXXXXXXXXX
[paste_deploy]
flavor = keystone

/etc/glance/glance-registry.conf:

[DEFAULT]
admin_token = XXXXXXXXXXXX
log_file = keystone.log
log_dir = /var/log/keystone
[sql]
connection = mysql://keystone: XXXXXXXXXXXX @localhost/keystone
[identity]
driver = keystone.identity.backends.sql.Identity

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 46 of 72

[credential]
driver = keystone.credential.backends.sql.Credential
[trust]
admin_user = glance
admin_password = XXXXXXXXXXXX
[paste_deploy]
flavor = keystone
root@ctrl_node:/etc/glance# egrep -v "^#|^$" glance-registry.conf
[DEFAULT]
bind_host = 0.0.0.0
bind_port = 9191
log_file = /var/log/glance/registry.log
backlog = 4096
sql_connection = mysql://glance: XXXXXXXXXXXX@10.1.1.10/glance
sql_idle_timeout = 3600
api_limit_max = 1000
limit_param_default = 25
[keystone_authtoken]
auth_uri = http://10.1.1.10:5000
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = glance
admin_password = XXXXXXXXXXXX
[paste_deploy]
flavor = keystone

Populate the glance database:

glance-manage db_sync

And register the glance service and glance endpoint to the identity service:

keystone service-create --name=glance --type=image \

 --description="Glance Image Service"

keystone endpoint-create \

 --service-id=the_service_id_above \

 --publicurl=http://controller:9292 \

 --internalurl=http://controller:9292 \

 --adminurl=http://controller:9292

III. Step 3: Compute Controller setup

Install the required software:

apt-get install nova-novncproxy novnc nova-api \

 nova-ajax-console-proxy nova-cert nova-conductor \

 nova-consoleauth nova-doc nova-scheduler \

 python-novaclient

apt-get install nova-compute-kvm python-guestfs

apt-get install nova-network nova-api-metadata

Configure the nova service:

/etc/nova/nova.conf:

[DEFAULT]

admin_token = XXXXXXXXXXXX

log_file = keystone.log

log_dir = /var/log/keystone

[sql]

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 47 of 72

connection = mysql://keystone: XXXXXXXXXXXX@localhost/keystone

[identity]

driver = keystone.identity.backends.sql.Identity

[credential]

driver = keystone.credential.backends.sql.Credential

[trust]

rabbit_password = XXXXXXXXXXXX

my_ip=10.1.1.12

vnc_enabled=True

vncserver_listen=0.0.0.0

vncserver_proxyclient_address=10.1.1.12

novncproxy_base_url=http://192.168.1.10:6080/vnc_auto.html

glance_host=10.1.1.10

network_api_class=nova.network.neutronv2.api.API

neutron_url=http://10.1.1.11:9696

neutron_auth_strategy=keystone

neutron_admin_tenant_name=service

neutron_admin_username=neutron

neutron_admin_password= XXXXXXXXXXXX

neutron_admin_auth_url=http://10.1.1.10:35357/v2.0

linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver

firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver

security_group_api=neutron

volume_api_class = nova.volume.cinder.API

volume_name_template = volume-%s

volume_group = cinder-volumes

libvirt_inject_password=true

libvirt_inject_key=true

[database]

connection = mysql://nova:XXXXXXXXXXXX@10.1.1.10/nova

Populate the nova database:

nova-manage db sync

Create service and service endpoints:

keystone service-create --name=nova --type=compute \

 --description="Nova Compute service"

keystone endpoint-create \

 --service-id=the_service_id_above \

 --publicurl=http://controller:8774/v2/%\(tenant_id\)s \

 --internalurl=http://controller:8774/v2/%\(tenant_id\)s \

 --adminurl=http://controller:8774/v2/%\(tenant_id\)s

Enable read access to linux kernel (slight security risk, but a requirement!)

dpkg-statoverride --update --add root root 0644 /boot/vmlinuz-$(uname -r)

and make this change permanent, by creating /etc/kernel/postinst.d/statoverride with the following
content:

#!/bin/sh

version="$1"

passing the kernel version is required

[-z "${version}"] && exit 0

dpkg-statoverride --update --add root root 0644 /boot/vmlinuz-${version}

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 48 of 72

IV. Step 4: WEB GUI Setup

Even though OpenStack network infrastructure is not complete, since Neutron is not installed, we
can enable the WEB GUI of OpenStack (Horizon) in order to perform additional tasks without the
need of the command line tools. Horizon can be installed on the controller node.

Install the required packages:

apt-get install memcached libapache2-mod-wsgi OpenStack-dashboard

Create a self-signed certificate to use with the Apache2 web server:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/apache2/ssl/apache.key -out etc/apache2/ssl/apache.crt

Edit /etc/OpenStack-dashboard/local_settings.py and insert “USE_SSL = True” at the begging of the
file in order to enable HTTP over SSL. Next, replace the “SECRET_KEY” variable with a random
alphanumeric string and define the OPENSTACK_HOST, OPENSTACK_KEYSTONE_URL and
OPENSTACK_KEYSTONE_DEFAULT_ROLE variables:

OPENSTACK_HOST = "192.168.1.10"
OPENSTACK_KEYSTONE_URL = "http://%s:5000/v2.0" % OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "Member"

Finally, we need to define the database credentials, used by horizon to connect to the MySQL
database:

DATABASES = {
 'default': {
 # Database configuration here
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'dash',
 'USER': 'dash',
 'PASSWORD': XXXXXXXXXXXX,
 'HOST': 'localhost',
 'default-character-set': 'utf8'
 }
}

Apache needs to be configured separately:

/etc/apache2/conf-available/OpenStack-dashboard.conf:

<VirtualHost *:80>
ServerName 192.168.1.10
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI}
</IfModule>
<IfModule !mod_rewrite.c>
RedirectPermanent / https://192.168.1.10
</IfModule>
</VirtualHost>
<VirtualHost *:443>
ServerName 192.168.1.10

SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.crt
SSLCertificateKeyFile /etc/apache2/ssl/apache.key
SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown

WSGIScriptAlias / /usr/share/OpenStack-dashboard/OpenStack_dashboard/wsgi/django.wsgi

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 49 of 72

WSGIDaemonProcess horizon user=www-data group=www-data processes=3 threads=10
Alias /static /usr/share/OpenStack-dashboard/OpenStack_dashboard/static/
<Directory /usr/share/OpenStack-dashboard/OpenStack_dashboard/wsgi>
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

V. Step 5: Block Storage Service

Install the required packages. The block storage service (“Cinder”) can be installed on the compute
node.

apt-get install cinder-api cinder-scheduler cinder-volume

Configure the service:

/etc/cinder/cinder.conf:

[DEFAULT]
rootwrap_config = /etc/cinder/rootwrap.conf
api_paste_confg = /etc/cinder/api-paste.ini
iscsi_helper = tgtadm
iscsi_ip_address = 10.1.1.12
volume_name_template = volume-%s
volume_group = cinder-volumes
verbose = True
auth_strategy = keystone
state_path = /var/lib/cinder
lock_path = /var/lock/cinder
volumes_dir = /var/lib/cinder/volumes
rpc_backend = cinder.OpenStack.common.rpc.impl_kombu
rabbit_host = 10.1.1.10
rabbit_port = 5672
rabbit_userid = guest
rabbit_password = XXXXXXXXXXXX
glance_host = 10.1.1.10
scheduler_driver=cinder.scheduler.filter_scheduler.FilterScheduler
my_ip=10.1.1.12
[database]
connection = mysql://cinder: XXXXXXXXXXXX@10.1.1.10/cinder

/etc/cinder/api-paste.ini:

[composite:osapi_volume]
use = call:cinder.api:root_app_factory
/: apiversions
/v1: OpenStack_volume_api_v1
/v2: OpenStack_volume_api_v2
[composite:OpenStack_volume_api_v1]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = faultwrap sizelimit noauth apiv1
keystone = faultwrap sizelimit authtoken keystonecontext apiv1
keystone_nolimit = faultwrap sizelimit authtoken keystonecontext apiv1
[composite:OpenStack_volume_api_v2]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = faultwrap sizelimit noauth apiv2
keystone = faultwrap sizelimit authtoken keystonecontext apiv2
keystone_nolimit = faultwrap sizelimit authtoken keystonecontext apiv2
[filter:faultwrap]
paste.filter_factory = cinder.api.middleware.fault:FaultWrapper.factory

mailto:XXXXXXXXXXXX@10.1.1.10/cinder

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 50 of 72

[filter:noauth]
paste.filter_factory = cinder.api.middleware.auth:NoAuthMiddleware.factory

[filter:sizelimit]
paste.filter_factory = cinder.api.middleware.sizelimit:RequestBodySizeLimiter.fa
ctory
[app:apiv1]
paste.app_factory = cinder.api.v1.router:APIRouter.factory
[app:apiv2]
paste.app_factory = cinder.api.v2.router:APIRouter.factory
[pipeline:apiversions]
pipeline = faultwrap osvolumeversionapp
[app:osvolumeversionapp]
paste.app_factory = cinder.api.versions:Versions.factory
[filter:keystonecontext]
paste.filter_factory = cinder.api.middleware.auth:CinderKeystoneContext.factory
[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = cinder
admin_password = XXXXXXXXXXXX

This particular configuration, implies that, a volume group with name “cinder-volumes” already exists
in the target machine. Next, we need to populate the cinder database:

cinder-manage db sync

Create the cinder service and endpoint API:

keystone service-create --name=cinder --type=volume \

 --description="Cinder Volume Service"

keystone endpoint-create \

 --service-id=the_service_id_above \

 --publicurl=http://controller:8776/v1/%\(tenant_id\)s \

 --internalurl=http://controller:8776/v1/%\(tenant_

We also need to register a service and an endpoint for version 2 of the block storage API:

keystone service-create --name=cinderv2 --type=volumev2 \

 --description="Cinder Volume Service V2"

keystone endpoint-create \

 --service-id=the_service_id_above \

 --publicurl=http://controller:8776/v2/%\(tenant_id\)s \

 --internalurl=http://controller:8776/v2/%\(tenant_id\)s \

 --adminurl=http://controller:8776/v2/%\(tenant_id\)s

VI. Step 6: Networking Service

We installed networking services on a dedicated network node. The scenario we implemented
involved the installation of the all the required software on one node, which provides the DHCP, NAT,
DNS Masquerading and L3 switching operations. Some necessary software packages were also
installed on the compute node, to provide OpenStack networking functionality to the virtual
machines. For this scenario, we had to implement Neutron, with one tenant, one private network,
one public network and one router.

First, we need to register services and endpoints:

keystone service-create --name=neutron --type=network \

 --description="OpenStack Networking Service"

keystone endpoint-create \

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 51 of 72

 --service-id the_service_id_above \

 --publicurl http://controller:9696 \

 --adminurl http://controller:9696 \

 --internalurl http://controller:9696

Next, we need to perform the basic setup of networking services on the network controller and the
compute node.

VII. Dedicated network controller node

Install required packages:

apt-get install neutron-server neutron-dhcp-agent neutron-plugin-openvswitch-agent

neutron-l3-agent

Enable packet forwarding and disable packet filtering (/etc/sysctl.conf):

net.ipv4.ip_forward=1

net.ipv4.conf.all.rp_filter=0

net.ipv4.conf.default.rp_filter=0

Configure the neutron service:

/etc/neutron/neutron.conf:
[DEFAULT]
verbose = True
state_path = /var/lib/neutron
lock_path = $state_path/lock
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.OVSNeutronPluginV2
auth_strategy = keystone
fake_rabbit = False
rabbit_host = 10.1.1.10
rabbit_password = XXXXXXXXXXXX
rabbit_port = 5672
rabbit_hosts = 10.1.1.10:5672
rabbit_virtual_host = /
notification_driver = neutron.OpenStack.common.notifier.rpc_notifier
[quotas]
[agent]
root_helper = sudo /usr/bin/neutron-rootwrap /etc/neutron/rootwrap.conf
[keystone_authtoken]
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
signing_dir = $state_path/keystone-signing
[database]
connection = mysql://neutron:XXXXXXXXXXXX@10.1.1.10:3306/neutron
[service_providers]
service_provider=LOADBALANCER:Haproxy:neutron.services.loadbalancer.drivers.hapr
oxy.plugin_driver.HaproxyOnHostPluginDriver:default

/etc/neutron/api-paste.ini:

[composite:neutron]
use = egg:Paste#urlmap
/: neutronversions
/v2.0: neutronapi_v2_0
[composite:neutronapi_v2_0]
use = call:neutron.auth:pipeline_factory

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 52 of 72

noauth = extensions neutronapiapp_v2_0
keystone = authtoken keystonecontext extensions neutronapiapp_v2_0

[filter:keystonecontext]
paste.filter_factory = neutron.auth:NeutronKeystoneContext.factory
[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host = 10.1.1.10
auth_uri = http://10.1.1.10:5000
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
[filter:extensions]
paste.filter_factory = neutron.api.extensions:plugin_aware_extension_middleware_
factory
[app:neutronversions]
paste.app_factory = neutron.api.versions:Versions.factory
[app:neutronapiapp_v2_0]
paste.app_factory = neutron.api.v2.router:APIRouter.factory

/etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1,physnet2:512:512
integration_bridge = br-int
bridge_mappings = physnet1:br-ex,physnet2:br-eth0
[agent]
[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewal
lDriver
[database]
connection = mysql://neutron:XXXXXXXXXXXX@10.1.1.10/neutron

/etc/neutron/metadata_agent.ini:

[DEFAULT]
debug = True
auth_url = http://10.1.1.10:5000/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
endpoint_type = http://10.1.1.10:35357/v2.0
nova_metadata_ip = 10.1.1.10
nova_metadata_port = 8775
metadata_proxy_shared_secret = XXXXXXXXXXXX

VIII. Dedicated Compute node

Install the required software:

apt-get install neutron-plugin-openvswitch-agent openvswitch-datapath-dkms

Disable packet filtering (/etc/sysctl.conf):

net.ipv4.conf.all.rp_filter=0

net.ipv4.conf.default.rp_filter=0

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 53 of 72

Configure the neutron services:

/etc/neutron/neutron.conf:

[DEFAULT]
state_path = /var/lib/neutron
lock_path = $state_path/lock
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.OVSNeutronPluginV2
auth_strategy = keystone
rpc_backend = neutron.OpenStack.common.rpc.impl_kombu
rabbit_host = 10.1.1.10
rabbit_password = XXXXXXXXXXXX
rabbit_port = 5672
rabbit_userid = guest
rabbit_virtual_host = /
notification_driver = neutron.OpenStack.common.notifier.rpc_notifier
[quotas]
[agent]
root_helper = sudo /usr/bin/neutron-rootwrap /etc/neutron/rootwrap.conf
[keystone_authtoken]
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
signing_dir = $state_path/keystone-signing
auth_url = http://10.1.1.10:35357/v2.0
[database]
connection = mysql://neutron:XXXXXXXXXXXX@10.1.1.10/neutron
[service_providers]
service_provider=LOADBALANCER:Haproxy:neutron.services.loadbalancer.drivers.hapr
oxy.plugin_driver.HaproxyOnHostPluginDriver:default

/etc/neutron/api-paste.ini:

[composite:neutron]
use = egg:Paste#urlmap
/: neutronversions
/v2.0: neutronapi_v2_0
[composite:neutronapi_v2_0]
use = call:neutron.auth:pipeline_factory
noauth = extensions neutronapiapp_v2_0
keystone = authtoken keystonecontext extensions neutronapiapp_v2_0
[filter:keystonecontext]
paste.filter_factory = neutron.auth:NeutronKeystoneContext.factory
[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host = 10.1.1.10
auth_uri = http://10.1.1.10:5000
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
[filter:extensions]
paste.filter_factory = neutron.api.extensions:plugin_aware_extension_middleware_
factory
[app:neutronversions]
paste.app_factory = neutron.api.versions:Versions.factory
[app:neutronapiapp_v2_0]
paste.app_factory = neutron.api.v2.router:APIRouter.factory

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 54 of 72

/etc/neutron/l3_agent.ini:

[DEFAULT]
debug = False
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
external_network_bridge = br-ex
l3_agent_manager = neutron.agent.l3_agent.L3NATAgentWithStateReport
enable_multi_host = True
auth_url = http://10.1.1.10:35357/v2.0
admin_tenant_name = service
admin_user = neutron
admin_password = XXXXXXXXXXXX
metadata_ip = 10.1.1.10
use_namespaces = True

IX. Creation of basic networks

The following set of commands can be used to create the public network portion of the networking
infrastructure. The public networks are assigned to the default service tenant. First, we need to
create the networks and then create subnets under these networks:

tenant=$(keystone tenant-list | awk '/service/ {print $2}')

neutron router-create router01

neutron net-create --tenant-id $tenant public01 \

 --provider:network_type flat \

 --provider:physical_network physnet1 \

 --router:external=True

neutron subnet-create --tenant-id $tenant --name public01_subnet01 \

 --gateway 139.91.210.1 public01 139.91.210.0/26

neutron router-gateway-set router01 public01

Next, we will create the private network of the CHIC tenant:

tenant=$(keystone tenant-list|awk '/demo/ {print $2}'

neutron net-create --tenant-id $tenant net01 \

 --provider:network_type vlan \

 --provider:physical_network physnet2 \

 --provider:segmentation_id 512

neutron subnet-create --tenant-id $tenant --name net01_subnet01 net01 10.1.2.0/24

neutron router-interface-add router01 net01_subnet01

X. Step 7: Object Storage

In principle, Object storage (Swift) uses multiple dedicated storage servers and includes set of
servers, processes, and rings. Servers, include proxy server operations, server for objects, containers
and accounts. Proxy servers provide a unified interface for clients and a single point of
communication with underlying storage architecture. Object servers perform simple operations like
upload, modify, and retrieve objects. Container servers handle containers, which actually represent
the logical structure of the objects, like directories. Account servers provide account manipulation.

Swift was implemented using both Swift All-In-One (SAIO) the distinct servers model. The reason for
this was that, we had only one machine capable of providing fast storage services (which hosted the
SAIO deployment) but at the same time, we needed a remote storage to implement different policies
and test the data localization features of Swift. For our SAIO implementation, we had to install all
required software on one machine:

apt-get install curl gcc memcached rsync sqlite3 xfsprogs \

 git-core libffi-dev python-setuptools \

 python-coverage python-dev python-nose \

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 55 of 72

 python-simplejson python-xattr python-eventlet \

 python-greenlet python-pastedeploy \

 python-netifaces python-pip python-dnspython \

 python-mock python-swiftclient python-Swift\

 Swift-account Swift-container Swift-object Swift-proxy

Swift storage will be emulated on a dedicated filesystem on the object storage server. We setup a
single partition on the target system, formatted with the xfs filesystem and mounted under the /mnt
directory, with options: noatime,nodiratime,nobarrier,logbufs=8.

Swift rings were defined as mapping between the physical location of objects and objects’ logical
names.

For this project, we emulated a ring of a four node Swift cluster. In order to accomplish this, we
create 4 distinct locations under the mount point of the Swift partition, with the following commands
(sdc1 represents the partition on the node containing the Swift data):

mkdir /mnt/sdc1/1 /mnt/sdc1/2 /mnt/sdc1/3 /mnt/sdc1/4

chown ${USER}:${USER} /mnt/sdc1/*

mkdir /srv

for x in {1..4}; do ln -s /mnt/sdc1/$x /srv/$x; done

mkdir -p /srv/1/node/sdc1 /srv/2/node/sdc2 /srv/3/node/sdc3 \

 /srv/4/node/sdc4 /var/run/Swift

chown -R ${USER}:${USER} /var/run/Swift

for x in {1..4}; do chown -R ${USER}:${USER} /srv/$x/; done

$USER is defined as the default Swift user, in our case “Swift”.

Then, we need to setup rsync. Swift uses rsync in order to keep coherent data between Swift cluster
servers:

/etc/rsyncd.conf:

uid = Swift
gid = Swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 127.0.0.1

[account6012]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6012.lock

[account6022]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6022.lock

[account6032]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6032.lock

[account6042]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6042.lock

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 56 of 72

[container6011]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6011.lock

[container6021]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6021.lock

[container6031]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6031.lock

[container6041]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6041.lock

[object6010]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6010.lock

[object6020]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6020.lock

[object6030]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6030.lock

[object6040]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6040.lock

Next, we need to configure the Swift service itself.

/etc/Swift/Swift.conf:

[Swift-hash]
Swift_hash_path_prefix = XXXXXXXXXX
Swift_hash_path_suffix = XXXXXXXXXX

/etc/Swift/proxy-server.conf:

[DEFAULT]
bind_port = 8080
workers = 1

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 57 of 72

user = Swift
log_facility = LOG_LOCAL1
eventlet_debug = true
[pipeline:main]
pipeline = catch_errors healthcheck cache authtoken keystoneauth proxy-server
[filter:catch_errors]
use = egg:Swift#catch_errors
[filter:healthcheck]
use = egg:Swift#healthcheck
[filter:proxy-logging]
use = egg:Swift#proxy_logging
[filter:bulk]
use = egg:Swift#bulk
[filter:ratelimit]
use = egg:Swift#ratelimit
[filter:crossdomain]
use = egg:Swift#crossdomain
[filter:dlo]
use = egg:Swift#dlo
[filter:slo]
use = egg:Swift#slo
[filter:tempurl]
use = egg:Swift#tempurl
[filter:staticweb]
use = egg:Swift#staticweb
[filter:account-quotas]
use = egg:Swift#account_quotas
[filter:container-quotas]
use = egg:Swift#container_quotas
[filter:cache]
use = egg:Swift#memcache
[filter:gatekeeper]
use = egg:Swift#gatekeeper
[app:proxy-server]
use = egg:Swift#proxy
allow_account_management = true
account_autocreate = true
[filter:keystoneauth]
use = egg:Swift#keystoneauth
operator_roles = Member,admin,swiftoperator,_member_
[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
delay_auth_decision = 20
signing_dir = /etc/Swift/keystone-signing
auth_version = v2.0
auth_host = 10.1.1.10
auth_port = 35357
auth_protocol = http
auth_url = http://10.1.1.10:35357/v2.0
admin_tenant_name = service
admin_user = Swift
admin_password = XXXXXXXXXX
[filter:cache]
use = egg:Swift#memcache
[filter:catch_errors]
use = egg:Swift#catch_errors
[filter:healthcheck]
use = egg:Swift#healthcheck

Finally, we need to create the rings, with the following commands:

Swift-ring-builder object.builder create 10 3 1

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 58 of 72

Swift-ring-builder object.builder add r1z1-127.0.0.1:6010/sdc1 1

Swift-ring-builder object.builder add r1z2-127.0.0.1:6020/sdc2 1

Swift-ring-builder object.builder add r1z3-127.0.0.1:6030/sdc3 1

Swift-ring-builder object.builder add r1z4-127.0.0.1:6040/sdc4 1

Swift-ring-builder object.builder rebalance

Swift-ring-builder container.builder create 10 3 1

Swift-ring-builder container.builder add r1z1-127.0.0.1:6011/sdc1 1

Swift-ring-builder container.builder add r1z2-127.0.0.1:6021/sdc2 1

Swift-ring-builder container.builder add r1z3-127.0.0.1:6031/sdc3 1

Swift-ring-builder container.builder add r1z4-127.0.0.1:6041/sdc4 1

Swift-ring-builder container.builder rebalance

Swift-ring-builder account.builder create 10 3 1

Swift-ring-builder account.builder add r1z1-127.0.0.1:6012/sdc1 1

Swift-ring-builder account.builder add r1z2-127.0.0.1:6022/sdc2 1

Swift-ring-builder account.builder add r1z3-127.0.0.1:6032/sdc3 1

Swift-ring-builder account.builder add r1z4-127.0.0.1:6042/sdc4 1

Swift-ring-builder account.builder rebalance

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 59 of 72

7 References

All the links to online articles and resources listed below were valid and accessible during the
compilation of this report [Last accessed: March 2015].

[1] "The NIST Definition of Cloud Computing," 2011.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[2] "Deep sequencing”, http://en.wikipedia.org/wiki/Deep_sequencing.

[3] N. Shomron, "Deep Sequencing Data Analysis," Springer.

[4] L. Ying-Chih, Y. Chin-Sheng and L. Yen-Jen, "Enabling Large-Scale Biomedical Analysis in the
Cloud," BioMed Research International, vol. 2013, p. 6, 2013.

[5] A. Rosenthal, . Mork, . Li, . Stanford, D. Koester and . Reynolds, "Cloud computing: a new
business paradigm for biomedical information sharing," J Biomed Inform, pp. 342-353, 04
2010.

[6] M. Penhaker, . Krejcar, . Kasik and . Snášel, "Cloud Computing Environments for Biomedical
Data Services," Intelligent Data Engineering and Automated Learning - IDEAL 2012, vol. 7435,
pp. 336-343, 2012.

[7] H. Kaplan, M. Cowing and G. Egli, "A primer for data-protection principles in the European
Union," 2009.
http://www.shb.com/attorneys/CowingMark/APrimerforDataProtectionPrinciples.pdf

[8] U. D. o. H. a. H. S. (HHS), "Standards for Privacy of Individually Identifiable Health Information”,
http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/introdution.html

[9] U. D. o. H. a. H. S. (HHS), "Code of Federal Regulations”,
http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.html

[10] V. Bonazzi, G. Komatsoulis and P. Bourne, " Biomedical Research as a Connected Digital
Enterprise”,
http://bd2k.nih.gov/pdf/Documents_for_ADDS_Data_Science_Meeting_the_nih_commons.pd
f

[11] Zhou, Minqi; Zhang, Rong; Zeng, Dadan; Qian, Weining;, "Services in the cloud computing era:
a survay," in 4th International Universal Communication Symposium (IUCS), IEEE, Shanghai,
2010.

[12] P. Costa, M. Migliavacca, P. Pietzuch and A. L. Wolf, "NaaS: network-as-a-service in the cloud,"
in 2nd USENIX conference on Hot Topics in Management of Internet, Cloud and Enterprise
Networks and Services, San Jose, CA, 2012.

[13] K. Rubenstein, "Cloud Computing in Life Sciences R&D," Cambridge Healthtech Institute, 2010.

[14] C. w. paper, "Challenges and Opportunities with Big Data”,
https://www.purdue.edu/discoverypark/cyber/assets/pdfs/BigDataWhitePaper.pdf .

[15] A. Rosenthal and et al, "Cloud computing: A new business paradigm for biomedical information
sharing," Journal of Biomedical Informatics, no. 43, p. 342–353, 2010.

[16] D. Thilakanathan, S. Chenb, S. Nepal and R. L. Calvo, "A platform for secure monitoring and
sharing of generic health data in the Cloud," Future Generation Computer Systems, vol. 35, pp.
102-113, 2014.

[17] Microsoft, "MicrosoftHealthVault”, http://www.microsoft.com/en-us/healthvault/.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://en.wikipedia.org/wiki/Deep_sequencing
http://www.shb.com/attorneys/CowingMark/APrimerforDataProtectionPrinciples.pdf
http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/introdution.html
http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.html
http://bd2k.nih.gov/pdf/Documents_for_ADDS_Data_Science_Meeting_the_nih_commons.pdf
http://bd2k.nih.gov/pdf/Documents_for_ADDS_Data_Science_Meeting_the_nih_commons.pdf
https://www.purdue.edu/discoverypark/cyber/assets/pdfs/BigDataWhitePaper.pdf
http://www.microsoft.com/en-us/healthvault/

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 60 of 72

[18] F. Rocha, S. Abreu and M. Correia, "The final frontier: confidentiality and privacy in the Cloud,"
IEEE Computer, vol. 44, no. 9, p. 44–50, 2011.

[19] W. Jansen and T. Grance, "Guidelines on security and privacy in public cloud computing".

[20] D. Riley, "Using google wave and docs for group collaboration," Library Hi Tech News 27, 2010.

[21] A. Gellin, "Facebook’s benefits make it worthwhile," Buffalo News , 2012.

[22] J. Saarinen, 7 8 2012. http://www.itnews.com.au/News/311079,ukhealth-trust-fined-for-
privacy-breach.aspx.

[23] R. Sarathy and K. Muralidhar, "Secure and useful data sharing," Decision Support Systems , vol.
1, no. 42, pp. 204-220, 2006.

[24] D. Butler, "Data Sharing Threatens Privacy," vol. 449, no. 7163, p. 2007.

[25] L. Feldman, D. Patel, L. Ortmann, K. Robinson and T. Popovic, "Educating for the future:
another important benefit of data sharing," The Lancet, vol. 379, no. 9829, p. 1877–1878,
2012.

[26] F. Rocha, S. Abreu and M. Correia, "The final frontier: confidentiality and privacy in the Cloud,"
IEEE Computer, vol. 44, no. 9, pp. 44-50, 2011.

[27] W. Jansen and T. Grance, "Guidelines on Security and Privacy in Public Cloud Computing," NIST
Special Publication 800-144, 2011.

[28] M. Li, S. Yu, Y. Zheng, K. Ren and W. Lou, "Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption," IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 1, pp. 131-143, 2013.

[29] S.-s. Tu, S.-z. Niu, H. Li, Y. Xiao-ming and M.-j. Li, "Finegrained access control and revocation for
sharing data on clouds," in Parallel and Distributed Processing Symposium Workshops & Ph.D.
Forum (IPDPSW), 2012.

[30] HIPAA. U.S. Department of Health and Human Services,
http://www.hhs.gov/ocr/privacy/index.html.

[31] J. Saarinen, "UK health trust fined for privacy breach," Itnews Technology News, 7 04 2012.
http://www.itnews.com.au/News/311079,ukhealth-trust-fined-for-privacy-breach.aspx.

[32] S. SeongHan, K. Kobara and H. Imai, "International Conference on a Secure Public Cloud
Storage System," in Internet Technology and Secured Transactions, 2011.

[33] Z. Minqi, Z. Rong, X. Wei, Q. Weining and Z. Aoying, "Security and Privacy in Cloud Computing:
A Survey," in Sixth International Conference on Semantics Knowledge and Grid (SKG), 2010.

[34] A. Duncan, S. Creese and M. Goldsmith, "Insider attacks in Cloud computing," in IEEE 11th
International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2012.

[35] Z. H. C. Deyan, "Data security and privacy protection issues in Cloud computing," in
International Conference on Computer Science and Electronics Engineering (ICCSEE), 2012.

[36] C. Kuner, European Data Protection Law: Corporate Regulation and Compliance, Oxford
University Press, 2007.

[37] J. Herveg, "The ban on processing medical data in European law: consent and alternative
solutions to legitimate the processing of medical data in healthgrid," in Proceedings of
Healthgrid, 2006.

http://www.itnews.com.au/News/311079,ukhealth-trust-fined-for-privacy-breach.aspx
http://www.itnews.com.au/News/311079,ukhealth-trust-fined-for-privacy-breach.aspx
http://www.hhs.gov/ocr/privacy/index.html
http://www.itnews.com.au/News/311079,ukhealth-trust-fined-for-privacy-breach.aspx

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 61 of 72

[38] I. A. o. P. P. Staff, "European commission sends draft regulation out for review”,
https://privacyassociation.org/news/a/european-commission-sends-draft-regulation-out-for-
review/

[39] D. OPTIMIS, "Cloud Legal Guidelines: Data Security, Ownership Rights and Domestic Green
Legislation", http://www.optimis-project.eu/sites/default/files/content-
files/document/d7213-cloud-legal-guidelines.pdf .

[40] M. Freedman, K. Nissim and B. Pinkas, "Efficient private matching and set intersection," in
Advances in Cryptology-EUROCRYPT 2004, 2004.

[41] V. Danilatou and S. Ioannidis, "Security and privacy architectures for biomedical cloud
computing," in 10th IEEE International Conference on Information Technology and Applications
in Biomedicine (ITAB '10), 2010.

[42] T. Dillon, C. Wu and E. Chang, "Cloud computing: Issues and challenges," in 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA), 2010.

[43] S. SeongHan, K. Kobara and H. Imai, "International Conference on a Secure Public Cloud
Storage System," in Internet Technology and Secured Transactions (ICITST), 2011.

[44] B. R. Kandukuri, V. R. Paturi and A. Rakshit, "Cloud Security Issues," in IEEE International
Conference on Services Computing, Bangalore, 2009.

[45] "Amazon Elastic Compute Cloud (Amazon EC2)," Amazon, http://aws.amazon.com/ec2/

[46] "Amazon Simple Storage Service (Amazon S3)," Amazon, http://aws.amazon.com/s3/

[47] ZDNet, "Rackspace, NASA launch OpenStack: Can it prevent cloud lock-in?," 19 07 2010.
http://www.zdnet.com/blog/btl/rackspace-nasa-launch-openstack-can-it-prevent-cloud-lock-
in/36850

[48] OpenStack, "Contributors/Corporate”,
https://wiki.openstack.org/wiki/Contributors/Corporate

[49] "The Apache Software Foundation”, http://www.apache.org/licenses/LICENSE-2.0.html . The
Apache Software Foundation.

[50] OpenStack, "Summit”, https://wiki.openstack.org/wiki/Summit.

[51] Amazon, "AWS CloudFormation”, http://aws.amazon.com/cloudformation/

[52] OpenStack, "OpenStack Storage”, http://www.openstack.org/software/openstack-storage/

[53] KVM, "Kernel based virtual machine”, http://www.linux-kvm.org/page/Main_Page

[54] X. Project, "The Hypervisor”, http://www.xenproject.org/developers/teams/hypervisor.html

[55] Wikipedia, "x86”, http://en.wikipedia.org/wiki/X86

[56] Wikipedia, "X86-64”, http://en.wikipedia.org/wiki/X86-64#Intel_64

[57] Wikipedia, "ARM architecture”, http://en.wikipedia.org/wiki/ARM_architecture

[58] OpenStack, "OpenStack Compute”, http://www.openstack.org/software/openstack-compute/

[59] “OpenStack, Eucalyptus and Cloudstack EC2 API comparison”,
https://wiki.openstack.org/wiki/Nova/APIFeatureComparison

[60] "Open Source Private Cloud Software”, http://www.eucalyptus.com/eucalyptus-cloud/iaas

[61] Amazon, "Amazon Web Services”, http://aws.amazon.com/.

[62] G. O. System, "GNU General Public License”, https://gnu.org/licenses/gpl.html.

https://privacyassociation.org/news/a/european-commission-sends-draft-regulation-out-for-review/
https://privacyassociation.org/news/a/european-commission-sends-draft-regulation-out-for-review/
http://www.optimis-project.eu/sites/default/files/content-files/document/d7213-cloud-legal-guidelines.pdf
http://www.optimis-project.eu/sites/default/files/content-files/document/d7213-cloud-legal-guidelines.pdf
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.zdnet.com/blog/btl/rackspace-nasa-launch-openstack-can-it-prevent-cloud-lock-in/36850
http://www.zdnet.com/blog/btl/rackspace-nasa-launch-openstack-can-it-prevent-cloud-lock-in/36850
https://wiki.openstack.org/wiki/Contributors/Corporate
http://www.apache.org/licenses/LICENSE-2.0.html
https://wiki.openstack.org/wiki/Summit
http://aws.amazon.com/cloudformation/
http://www.openstack.org/software/openstack-storage/
http://www.linux-kvm.org/page/Main_Page
http://www.xenproject.org/developers/teams/hypervisor.html
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/X86-64#Intel_64
http://en.wikipedia.org/wiki/ARM_architecture
http://www.openstack.org/software/openstack-compute/
https://wiki.openstack.org/wiki/Nova/APIFeatureComparison
http://www.eucalyptus.com/eucalyptus-cloud/iaas
http://aws.amazon.com/
https://gnu.org/licenses/gpl.html

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 62 of 72

[63] VMware, "Data Center Virtualization and Cloud Infrastructure Products”,
http://www.vmware.com/products/datacenter-virtualization/

[64] "Eucalyptus FAQ," Eucalyptus, http://www.eucalyptus.com/faq#q4

[65] "Eucalyptus," Amazon, http://www.aws-partner-
directory.com/PartnerDirectory/PartnerDetail?id=3016

[66] Eucalyptus, "Eucalyptus and Amazon Web Services Compatibility”,
https://www.eucalyptus.com/aws-compatibility

[67] "12.1. Amazon Web Services Compatible Interface," Apache Cloudstack,
http://cloudstack.apache.org/docs/en-
US/Apache_CloudStack/4.2.0/html/Installation_Guide/aws-ec2-introduction.html

[68] Eucalyptus, "Amazon Web Services EC2 Compatible Interface”,
https://cloudstack.apache.org/docs/en-
US/Apache_CloudStack/4.0.2/html/Installation_Guide/aws-ec2-introduction.html

[69] Apache Foundation, "Apache™ Hadoop®”, http://hadoop.apache.org/

[70] Openstack, "Welcome to Sahara! ”, http://docs.openstack.org/developer/sahara/

[71] "oVirt 3.3 release notes”,
http://www.ovirt.org/OVirt_3.3_release_announcement#OpenStack_and_oVirt:_A_match_ma
de_in_heaven

[72] "RightScale”, http://www.rightscale.com/2014-cloud-report

[73] T. C. o. t. I. C. o. I. T. S. (INCITS), "T10 Working Drafts”, http://www.t10.org/cgi-
bin/ac.pl?t=f&f=osd2r05a.pdf.

[74] Lustre, "Lustre”, http://wiki.lustre.org

[75] "Amazon S3”, http://aws.amazon.com/s3/

[76] "HP Cloud Object Storage”, http://www.hpcloud.com/products-services/object-storage?t=faq

[77] Openstack SWIFT, https://wiki.openstack.org/wiki/Swift

[78] "Openstack Object Storage API v1 Reference”, http://docs.openstack.org/api/openstack-
object-storage/1.0/content/ch_object-storage-dev-overview.html

[79] "Openstack Security Guide”, http://docs.openstack.org/security-guide/content/

[80] A. Fox and E. Brewer, "Harvest, Yield and Scalable Tolerant Systems," in Proc. 7th Workshop
Hot Topics in Operating Systems (HotOS 99), IEEE CS, 1999.

[81] W. Vogels, "Eventually Consistent," Queue, vol. 6, no. 6, pp. 14-19, 2008.

[82] Wikipedia, "MD5”, http://en.wikipedia.org/wiki/MD5

[83] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine and D. Lewin, "Consistent Hashing
and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web," in Twenty-ninth Annual ACM Symposium on Theory of Computing, 1997.

[84] O. Swift, "SAIO - Swift All In One”,
http://docs.openstack.org/developer/swift/development_saio.html

[85] O. Foundation, "Open vSwitch concepts”, http://docs.openstack.org/havana/install-
guide/install/apt/content/concepts-neutron.openvswitch.html

[86] O. Foundation, "Neutron Security Groups" Openstack Foundation,
https://wiki.openstack.org/wiki/Neutron/SecurityGroups

http://www.vmware.com/products/datacenter-virtualization/
http://www.eucalyptus.com/faq#q4
http://www.aws-partner-directory.com/PartnerDirectory/PartnerDetail?id=3016
http://www.aws-partner-directory.com/PartnerDirectory/PartnerDetail?id=3016
https://www.eucalyptus.com/aws-compatibility
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.2.0/html/Installation_Guide/aws-ec2-introduction.html
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.2.0/html/Installation_Guide/aws-ec2-introduction.html
https://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.2/html/Installation_Guide/aws-ec2-introduction.html
https://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.2/html/Installation_Guide/aws-ec2-introduction.html
http://hadoop.apache.org/
http://docs.openstack.org/developer/sahara/
http://www.ovirt.org/OVirt_3.3_release_announcement#OpenStack_and_oVirt:_A_match_made_in_heaven
http://www.ovirt.org/OVirt_3.3_release_announcement#OpenStack_and_oVirt:_A_match_made_in_heaven
http://www.rightscale.com/2014-cloud-report
http://www.t10.org/cgi-bin/ac.pl?t=f&f=osd2r05a.pdf
http://www.t10.org/cgi-bin/ac.pl?t=f&f=osd2r05a.pdf
http://wiki.lustre.org/
http://aws.amazon.com/s3/
http://www.hpcloud.com/products-services/object-storage?t=faq
https://wiki.openstack.org/wiki/Swift
http://docs.openstack.org/api/openstack-object-storage/1.0/content/ch_object-storage-dev-overview.html
http://docs.openstack.org/api/openstack-object-storage/1.0/content/ch_object-storage-dev-overview.html
http://docs.openstack.org/security-guide/content/
http://en.wikipedia.org/wiki/MD5
http://docs.openstack.org/developer/swift/development_saio.html
http://docs.openstack.org/havana/install-guide/install/apt/content/concepts-neutron.openvswitch.html
http://docs.openstack.org/havana/install-guide/install/apt/content/concepts-neutron.openvswitch.html
https://wiki.openstack.org/wiki/Neutron/SecurityGroups

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 63 of 72

[87] A. Computing, "TORQUE Resource Manager”,
http://www.adaptivecomputing.com/products/open-source/torque/

[88] A. Computing, "Maui”, http://www.adaptivecomputing.com/products/open-source/maui/

[89] "Niflheim Linux supercomputer cluster”, https://wiki.fysik.dtu.dk/niflheim/

[90] "Burrows-Wheeler Aligner”, http://bio-bwa.sourceforge.net/

[91] "SAMTools", http://samtools.sourceforge.net/

[92] "1000 Genomes; A Deep Catalog of Human Genetic Variation", http://www.1000genomes.org/

[93] OpenMPI, "Open MPI: Open Source High Performance Computing", http://www.open-
mpi.org/

[94] P. B.-W. Aligner, http://pbwa.sourceforge.net/

[95] IBM, "Linux virtualization and PCI passthrough",
http://www.ibm.com/developerworks/library/l-pci-passthrough/.

[96] I. Swiftstack, "swiftstack/ssbench," Swiftstack, Inc, https://github.com/swiftstack/ssbench.

[97] "GitHub”, https://github.com/swiftstack/ssbench

[98] D. Catteddu and G. Hogben, "Cloud Computing, Benefits, risks and recommendations for
information security," EINSA, 2009.

[99] "OASIS SAML Wiki," OASIS Security Services (SAML) Technical Committee, https://wiki.oasis-
open.org/security/FrontPage

[100] O. Foundation, "Specifications", http://openid.net/developers/specs/

[101] "oAuth", http://oauth.net/

[102] N. C. S. R. C. (CSRC), "Role Based Access Control (RBAC) and Role Based Security",
http://csrc.nist.gov/groups/SNS/rbac/

[103] Openstack, " Identity API protection with role-based access control (RBAC)," [Online].
Available: http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-
protection-with-role-based-access-control.html

[104] C. M. Initiative. http://dmtf.org/standards/cloud

[105] T. Xie, L. Fanbao and F. Dengguo, "Fast Collision Attack on MD5," Cryptology ePrint Archive,
2013.

[106] M. Stevens, A. K. Lenstra and B. De Weger, "Chosen-prefix collisions for MD5 and
applications," Int. J. Applied Cryptography, vol. 2, no. 4, 2012.

[107] S. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey and S. R. Sharma, "Guide to
IPsec VPNs," NIST, 2005.

[108] "Logical volume management", http://en.wikipedia.org/wiki/Logical_volume_management

[109] H. Mauelshagen, "LVM 1.0.8 README", http://ftp.gwdg.de/pub/linux/misc/lvm/1.0/README

[110] C. Fruhwirth, "LUKS On-Disk Format Specification Version 1.1," 8 12 2008,
http://cryptsetup.googlecode.com/svn-history/r42/wiki/LUKS-standard/on-disk-format.pdf

[111] "Openstack" , https://wiki.openstack.org/wiki/ObjectEncryption

[112] Mirantis. https://www.mirantis.com/blog/on-disk-encryption-prototype-for-openstack-swift/

[113] S. Institute, "Global Information Assurance Certification Paper; Man-In-the-Middle Attack
Brief," 200-2002.

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/maui/
https://wiki.fysik.dtu.dk/niflheim/
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://www.1000genomes.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://pbwa.sourceforge.net/
http://www.ibm.com/developerworks/library/l-pci-passthrough/
https://github.com/swiftstack/ssbench
https://github.com/swiftstack/ssbench
https://wiki.oasis-open.org/security/FrontPage
https://wiki.oasis-open.org/security/FrontPage
http://openid.net/developers/specs/
http://oauth.net/
http://csrc.nist.gov/groups/SNS/rbac/
http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-protection-with-role-based-access-control.html
http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-protection-with-role-based-access-control.html
http://dmtf.org/standards/cloud
http://en.wikipedia.org/wiki/Logical_volume_management
http://ftp.gwdg.de/pub/linux/misc/lvm/1.0/README
http://cryptsetup.googlecode.com/svn-history/r42/wiki/LUKS-standard/on-disk-format.pdf
https://wiki.openstack.org/wiki/ObjectEncryption
https://www.mirantis.com/blog/on-disk-encryption-prototype-for-openstack-swift/

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 64 of 72

[114] "OSSA-2014-005, Missing SSL certificate check in Python Swift client ", http://openstack-
security-advisories.readthedocs.org/en/latest/advisories/OSSA-2014-005.html

[115] "OpenStack Security Notes," https://wiki.openstack.org/wiki/OSSN .

[116] "OpenStack Security Notes, Cinder SSH Pool will auto-accept SSH host signatures by default"
https://wiki.openstack.org/wiki/OSSN/OSSN-0019 .

[117] "QEMU open source machine emulator and virtualizer," http://wiki.qemu.org/Main_Page .

[118] J. Morris, "sVirt: Hardening Linux Virtualization with Mandatory Access Control," 2009.
http://namei.org/presentations/svirt-lca-2009.pdf .

[119] Wikipedia, "Mandatory access control,"
http://en.wikipedia.org/wiki/Mandatory_access_control .

[120] N. S. A. S. S. (NSA/CSS), "SELinux Frequently Asked Questions (FAQ),"
https://www.nsa.gov/research/selinux/faqs.shtml.

[121] IETF, "Internet Security Glossary, Version 2," http://tools.ietf.org/html/rfc4949.

[122] T. O. Foundation, "REST Security Cheat Sheet,"
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet .

[123] “. S. G. team, "“OpenStack Security Group” team," https://launchpad.net/~openstack-ossg .

[124] “. V. M. t. team. https://launchpad.net/~openstack-vuln-mgmt .

[125] BCN, "Harvard, MIT Broad Institute deploys OpenStack for private cloud,"
http://www.businesscloudnews.com/2014/04/22/harvard-mit-broad-institute-deploys-
openstack-for-private-cloud/ .

[126] "Broad Institute of Harvard and MIT," https://www.broadinstitute.org/.

[127] CERN, “”The imortance of OpenSTack for CERN”,
http://home.web.cern.ch/about/updates/2014/01/importance-openstack-cern .

[128] CERN, "The Large Hadron Collider”, http://home.web.cern.ch/topics/large-hadron-collider .

[129] OpenStack, "Heat”, https://wiki.openstack.org/wiki/Heat .

[130] OpenStack, "Ceilometer”, https://wiki.openstack.org/wiki/Ceilometer .

[131] D. TechCenter, "HPC in an OpenStack Environment”,
http://en.community.dell.com/techcenter/high-performance-
computing/b/general_hpc/archive/2014/07/15/hpc-in-an-openstack-environment.

[132] "The virtualization API”, http://www.libvirt.org .

[133] OpenStack, "Enhanced-platform-awareness-pcie," https://wiki.openstack.org/wiki/Enhanced-
platform-awareness-pcie.

[134] "CloudStack Administrator's Guide," Apache Cloudstack,
http://cloudstack.apache.org/docs/en-
US/Apache_CloudStack/4.2.0/html/Admin_Guide/whatis.html .

[135] "CloudStack Administrator's Guide," Apache Cloudstack,
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.0-incubating/html-
single/Admin_Guide/#whatis .

[136] "Swauth 1.0.6 documentation”, http://greg.brim.net/swauth/stable/

[137] K. Rubenstein. [Online].

[138] OpenStack, "Harvard University," http://www.openstack.org/user-stories/harvard-university/

http://openstack-security-advisories.readthedocs.org/en/latest/advisories/OSSA-2014-005.html
http://openstack-security-advisories.readthedocs.org/en/latest/advisories/OSSA-2014-005.html
https://wiki.openstack.org/wiki/OSSN
https://wiki.openstack.org/wiki/OSSN/OSSN-0019
http://wiki.qemu.org/Main_Page
http://namei.org/presentations/svirt-lca-2009.pdf
http://en.wikipedia.org/wiki/Mandatory_access_control
https://www.nsa.gov/research/selinux/faqs.shtml
http://tools.ietf.org/html/rfc4949
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://launchpad.net/~openstack-ossg
https://launchpad.net/~openstack-vuln-mgmt
http://www.businesscloudnews.com/2014/04/22/harvard-mit-broad-institute-deploys-openstack-for-private-cloud/
http://www.businesscloudnews.com/2014/04/22/harvard-mit-broad-institute-deploys-openstack-for-private-cloud/
https://www.broadinstitute.org/
http://home.web.cern.ch/about/updates/2014/01/importance-openstack-cern
http://home.web.cern.ch/topics/large-hadron-collider
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Ceilometer
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2014/07/15/hpc-in-an-openstack-environment
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2014/07/15/hpc-in-an-openstack-environment
http://www.libvirt.org/
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.2.0/html/Admin_Guide/whatis.html
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.2.0/html/Admin_Guide/whatis.html
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.0-incubating/html-single/Admin_Guide/#whatis
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.0-incubating/html-single/Admin_Guide/#whatis
http://greg.brim.net/swauth/stable/
http://www.openstack.org/user-stories/harvard-university/

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 65 of 72

[139] A. Rodriguez, "RESTful Web services: The basics," 06 11 2008.
http://www.ibm.com/developerworks/library/ws-restful/

[140] R. Fielding, "Representational State Transfer (REST),"
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm .

[141] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka and E. Zeidner, "Internet Small Computer
Systems Interface (iSCSI)," 094 2004. http://tools.ietf.org/html/rfc3720 .

[142] A. N. S. f. I. T. I. C. f. I. T. S. T. G. T11, "Fibre Channel: Backbone - 5 revision 2.00," Fibre Channel
over Ethernet.

[143] VMWare vSphere5, https://www.vmware.com/support/vsphere5/doc/vsphere-esx-vcenter-
server-50-new-features.html

[144] VMWare vCloud Automation Center, http://www.vmware.com/products/vcloud-automation-
center

[145] VMWare vFabric Application Director, https://www.vmware.com/files/pdf/vfabric/VMware-
vFabric-Application-Director-Datasheet.pdf

http://www.ibm.com/developerworks/library/ws-restful/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://tools.ietf.org/html/rfc3720
https://www.vmware.com/support/vsphere5/doc/vsphere-esx-vcenter-server-50-new-features.html
https://www.vmware.com/support/vsphere5/doc/vsphere-esx-vcenter-server-50-new-features.html
http://www.vmware.com/products/vcloud-automation-center
http://www.vmware.com/products/vcloud-automation-center

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 66 of 72

Appendix 1 – Abbreviations and acronyms

ACL Access Control List

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

CADF Cloud Auditing Data Federation

CC Cluster Controller

CLC Cloud Controller

DaaS Desktop as a Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EBS Elastic Block Store

EC2 (Amazon) Elastic Compute Cloud

FC Fiber Channel

FCoE Fiber Channel over Ethernet

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HA High Availability

HTTP(S) Hypertext Transfer Protocol (Secure)

IaaS Infrastructure as a Service

IAM Identity and Access Management

ICT Information and Communication Technology

IDS Intrusion Detection System

IP Internet Protocol

iSCSI Internet SCSI

IT Information Technology

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

LDAP Lightweight Directory Access Protocol

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 67 of 72

LTS Long Term Support

LVM Logical Volume Manager

NaaS Network as a Service

NAT Network Address Translation

NC Node Controller

NIC Network Interface Controller

PaaS Platform as a Service

PAM Pluggable Authentication Module

PKI Public Key Infrastructure

POSIX Portable Operating System Interface

RBAC Role Based Access Control

RDP Remote Desktop Protocol

REST Representational State Transfer

S3 (Amazon) Simple Storage Service

SaaS Software as a Service

SAIO Swift All-in-one

SAML Security Assertion Markup Language

SC Storage Controller

SCSI Small Computer System Interface

SDK Software Development Kit

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

SSO Single Sign On

UI User Interface

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

vNIC Virtual NIC (Network Interface Controller)

VPN Virtual Private Network

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 68 of 72

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 69 of 72

Appendix 2 – List of tables and figures

List of figures

Figure 1 OpenStack components ... 10

Figure 2 OpenStack Storage Model .. 11

Figure 3 Eucalyptus Components ... 13

Figure 4 Computer nodes for the deployment of Eucalyptus .. 15

Figure 5 Cloudstack nested organization ... 17

Figure 6 Overall structure of VMWare vSphere ... 19

Figure 7 Overall structure of VMWare vSphere ... 21

Figure 8 Cloud technology adoption and usage ... 24

Figure 9 Private Cloud Usage trend (2014 vs. 2013) .. 24

Figure 10 OpenStack architecture .. 26

Figure 11: Account-Container-Object hierarchy .. 30

Figure 12 Swift cluster operation ... 31

Figure 13 CHIC OpenStack architecture ... 32

Figure 14 CHIC OpenStack deployment architecture .. 33

Figure 15 CHIC cloud cluster network diagram .. 34

Figure 16 CHIC cloud network topology .. 35

Figure 17 Keystone identity Manager .. 40

Figure 18 Horizon login screen ... 70

Figure 19 Horizon interface: overview screen ... 70

Figure 20 Horizon interface: instances ... 71

Figure 21 Horizon interface: volumes .. 71

Figure 22 Horizon interface: object storage .. 71

Figure 23 Horizon interface: images & snapshots ... 72

Figure 24 Horizon interface: networks ... 72

Figure 25 Horizon interface: routers .. 72

List of tables

Table 1 OpenStack components... 10

Table 2 OpenStack EC2 and S3 API ... 12

Table 3 Eucalyptus components .. 14

Table 4 Maximum virtual machine instances for the Eucalyptus deployment. 16

Table 5 Cloudstack components .. 17

Table 6 Comparative evaluation of OpenStack, Eucalyptus, Cloudstack and VSphere 23

file:///C:/Users/Giorgos/Desktop/CHIC_600841_D5-3_Techniques_to_build_the_cloud_infrastructure_available_to_the_community_v1-0.docx%23_Toc415566638
file:///C:/Users/Giorgos/Desktop/CHIC_600841_D5-3_Techniques_to_build_the_cloud_infrastructure_available_to_the_community_v1-0.docx%23_Toc415566639
file:///C:/Users/Giorgos/Desktop/CHIC_600841_D5-3_Techniques_to_build_the_cloud_infrastructure_available_to_the_community_v1-0.docx%23_Toc415566640

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 70 of 72

Appendix 3 – OpenStack GUI overview

OpenStack provides a web interface which can handle most of the everyday tasks, like creating
networks, instances, images and VM templates, defining security groups and rules, users etc.

This web interface is called Horizon and requires a functional web server (preferably Apache). For our
convenience, we installed Horizon on the Controller node, accessible over HTPS (port 443 with self-
signed certificate):

Figure 18 Horizon login screen

After logging into Horizon, the user can perform a set of tasks based on his role. A user can act as an
administrator, project administrator or project member. An overview of the running system is
displayed after the user logs in:

Figure 19 Horizon interface: overview screen

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 71 of 72

On the left side of the screen, under “Project”, are all the project related operations. We have
created one project with the name “CHIC”.

Instances can be manipulated under the “Instances” menu:

Figure 20 Horizon interface: instances

Volumes, are block devices which are allocated to instances. They can be created, allocated or
removed under the “Volume” menu:

Figure 21 Horizon interface: volumes

In addition to traditional block storage, we have enabled OpenStack’s object storage (Swift). We have
created three separate object storage containers for testing purposes (Swift-chic1, Swift-chic2 and
Swift-chic3):

Figure 22 Horizon interface: object storage

Operating system images are handled under “Images & Snapshots”. There is also an option which
enables the user to launch an instance directly from images menu:

Grant Agreement no. 600841

D5.3 – Techniques to build the cloud infrastructure available to the community

Page 72 of 72

Figure 23 Horizon interface: images & snapshots

Network operations are performed under “Network” and “Routers”:

Figure 24 Horizon interface: networks

Figure 25 Horizon interface: routers

	Contents
	1 Executive Summary
	1.1 Purpose of this document
	1.1.1 Cloud Computing
	1.1.2 Service models
	1.1.3 Deployment models
	1.1.4 The CHIC cloud infrastructure

	1.2 Overview of the document

	2 Evaluation and comparison of cloud infrastructure technologies
	2.1 Cloud technologies evaluation
	2.2 OpenStack
	2.2.1 Introduction
	2.2.2 Architecture
	OpenStack components are presented at Figure 1:
	2.2.2.1 Storage
	2.2.2.2 Networking
	2.2.2.3 Compute

	2.2.3 Amazon EC2 and Amazon S3 support

	2.3 Eucalyptus
	2.3.1 Introduction
	2.3.2 Architecture
	2.3.2.1 Cloud Controller
	2.3.2.2 Walrus
	2.3.2.3 Cluster Controller
	2.3.2.4 Storage Controller

	2.3.3 Amazon EC2 and Amazon S3 support
	2.3.4 Environment setup for feasibility tests

	2.4 CloudStack
	2.4.1 Introduction
	2.4.2 Architecture
	2.4.3 Amazon EC2 and Amazon S3 support

	2.5 VMWare vSphere
	2.5.1 VMware hypervisor (ESXi)
	2.5.2 VMware vCenter server
	2.5.3 VMware vSphere client/web client
	2.5.4 vSphere virtual machine file system (VMFS)
	2.5.5 vSphere virtual symmetric multi-processing (SMP)
	2.5.6 vSphere vMotion/storage vMotion
	2.5.7 vSphere High Availability (HA)
	2.5.8 vSphere distributed resource scheduler (DRS)/storage DRS
	2.5.9 vSphere fault tolerance (FT)
	2.5.10 vSphere distributed switch (VDS)
	2.5.11 Amazon EC2 and Amazon S3 support
	2.5.12 Environment setup for feasibility test
	2.5.12.1 Install vSphere hypervisor on both servers
	2.5.12.2 Connect to EXSi hosts and install vSphere vCenter server
	2.5.12.3 Configure both server as cloud and install Linux/Windows VMs
	2.5.12.4 Configure VM templates and create VM from template
	2.5.12.5 Clone and migrate VM
	2.5.12.6 Monitoring and disaster recovery

	2.6 Comparison of cloud technologies

	3 OpenStack architecture
	3.1 Introduction
	3.2 Object Storage
	3.3 OpenStack Object Store (Swift)
	3.3.1 Authentication
	3.3.2 Object Storage data hierarchy

	3.4 Swift: model of operation
	3.4.1 Servers
	3.4.2 Processes
	3.4.3 Rings

	3.5 Discussion

	4 Implementation of a private cloud infrastructure
	4.1 Introduction
	4.2 Software
	4.3 Network
	4.4 Rings
	4.5 Discussion

	5 Security
	5.1 Introduction
	5.2 Identity Management
	5.3 Authorization and Access Control
	5.4 Data Encryption
	5.5 Integration with CHIC security framework

	6 OpenStack quick installation guide
	I. Step 1: Install OpenStack repositories and required software
	II. Step 2: Controller node setup
	III. Step 3: Compute Controller setup
	IV. Step 4: WEB GUI Setup
	V. Step 5: Block Storage Service
	VI. Step 6: Networking Service
	VII. Dedicated network controller node
	VIII. Dedicated Compute node
	IX. Creation of basic networks
	X. Step 7: Object Storage

	7 References
	Appendix 1 – Abbreviations and acronyms
	Appendix 2 – List of tables and figures
	List of figures
	List of tables
	Appendix 3 – OpenStack GUI overview

