S\]D[O]Q,p

CHIC

Computational Horizons in Cancer

Deliverable No. 8.3

Implementation of the interfaces of the CHIC

Grant Agreement No.: 600841
Deliverable No.: D8.3
Deliverable Name: Implementation of the interfaces of the CHIC repositories
Contractual Submission Date: 30/09/2015
Actual Submission Date: 30/09/2015
Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
Cco Confidential, only for members of the consortium (including the Commission Services)

SEVENTH FRAMEWORK
PROGRAMME

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and
Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D8.3

Document name: Implementation of the interfaces of the CHIC repositories

Nature (R, P, D, O)* R

Dissemination Level PU

Version: 1

Actual Submission Date: 30/09/2015

Editor: Bernard de Bono

Institution: ucL

E-Mail: b.bono@ucl.ac.ul

ABSTRACT:

The key aim of the CHIC infrastructure is to ensure that distinct resources are able to communicate
effectively in support of hypermodelling studies. To that end, this document is focused on providing
a technical account of the interfaces for four these resources, namely: the hypermodel repository,
the clinical data repository, the metadata repository and the in silico trial repository.

KEYWORD LIST:

RESTful web service, SAML token, repository application programming interfaces, model repository
interfaces, in silico trial repository interfaces, repositories, clinical data, models, in silico trial,
semantics, metadata, triple store; semantic reasoning; RICORDO

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° 600841.

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

! R=Report, P=Prototype, D=Demonstrator, O=0ther

Page 2 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

MODIFICATION CONTROL

Version Date Status Author

0.3 19/09/2015 Draft Bernard de Bono, Nikolaos Touset, Roman
Niklaus, Samuel Alexander

0.4 20/09/2015 Draft Nikolaos Tousert, ICCS-NTUA

0.7 21/09/2015 Draft Bernard de Bono, Nikolaos Touset, Roman
Niklaus, Samuel Alexander

0.8 24/09/2015 Pre-final draft Nikolaos Tousert ICCS-NTUA

0.9 25/09/2015 Revision Georgios Stamatakos ICCS-NTUA,
Dimitra Dionysiou ICCS-NTUA

1.0 27/09/2015 Revision Bernard de Bono

List of contributors
— Bernard de Bono [UCL],
— Georgios Stamatakos [ICCS],
— Dimitra Dionysiou [ICCS],
— Nikolaos Tousert [ICCS],
— Roman Niklaus [UBern],

— Samuel Alexander [UCL].

Page 3 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Contents
1 EXECUTIVE SUMINARYcoooiiiiiiiieiiieteeeeeeeeeeeeeeesestseseressrersrsrsrsrsrsrs..................————..————.—.o.oooooooooooooooo oo oooo 8
2 AN 200 110 L T] P 9
2.1 PURPOSE OF THIS DOCUMENT ...ceetttuuueeeeeretusnnneeeeersssnnnseeessrsssnnsasesesssssnnnessessssssnsnsesesssssnnseeesssmsnnnnsesersnssnnnnseees 9
3 RESTFUL WEB SERVICES AND AUTHORIZATION ..vvvvvvvruruieruiererereinisisrnreenenrnnnnnnnnnnnnnnnnnnnnnnnnneseseseseses 12
3.1 REPOSITORIES MAKE USE OF RESTFUL APPLICATION PROGRAMMING INTERFACES ..vvuuueeererrennnneeeerernnnneeeersnnsnnneeees 12
3.2 AUTHENTICATION IN REPOSITORY WEB SERVICES .vuuuueeeeerruueuesesersensnnnnseesesssssnnsaseesssssnnnnsesessssssnnasesesssnsnnnnesesennes 13
4 INTERFACES OF THE CLINICAL DATA REPOSITORYouvuvuruiuinrurnrninnninrnnninenrnnnnnnnnnnnnnnnnnnnnnnneneseseseseseses 16
4.1 INTRODUCTION .11t et eeetttuuueseeereeesnneeeeesseennnseeessnssnnsseeessssnnnnasessnssnnnnseeessssssnnsesessnssnnnnseeesesssnnnseseesnssnnnneees 16
4.2 AUTHENTICATION etttuueeeeetetuuueseeessereneaseeersnesnenseeesssssnnnsesessssssnsnssesesssssnsssseesessssnnnsesessssssnsaseeessssssnnseseeennes 16
4.3 [T 1Y .Y 1Y]] X Rt 16
4.4 WEB-BASED USER INTERFACE .vuuueeeeeettsuuuseeereessnnnaeeessssssnnnsesessnsssnsnsseeesssssnnsasessssssnsnnsesessssssnnnsesessssssnnseseesnnes 17
4.5 RESTFUL APPLICATION PROGRAMMING INTERFACES .vvuuuneeeerrrunniesesererssnnnnseeerssssnnnsesessnssnnnneeesssesssnnsesessnssnnnnneees 18
4.6 SUMMARY .eeieeeettiteie e e e e eetat e seeeeeetauaaseeesaeasanassseeesssnnnnseseesnssnnsnsseeesssssnnsnseeessssnnnnsesesssssnnnnseeessessnnnneseennnes 44
5 IMPLEMENTATION OF THE INTERFACES OF MODEL/TOOL AND IN SILICO TRIAL REPOSITORIES 46
5.1 M ODEL/TOOL REPOSITORY SCHEMA ..vvvveeetieieuterteeeeesssesssseeesesssessessssssessessssmssssssesesssssmmssssssesssssssmsssssssessssnnns 46
5.2 MODEL/TOOL REPOSITORY RESTFUL APPLICATION PROGRAMMING INTERFACES .. uvvvverereeererinrrereeeeeessssssreeereessssnes 48
5.3 IN SILICO TRIAL REPOSITORY SCHEMAeeetiuuuieseeereessnnaseeessesnnnasesesssssnnnseeesssssnnnsesessnssnnnseeessesssnnnsesessnssnnnnneees 75
5.4 IN SILICO TRIAL REPOSITORY RESTFUL APPLICATION PROGRAMMING INTERFACES ...vvuuueeerrrrennnieeeeeernnnnseeessnsnnnnneees 77
6 RDF STORAGE SOLUTION FOR SEMANTIC METADATAovttttieiettiniettteieintnnnennn s sssesesesesnsesesesens 112
6.1 11N 12T 01T] 112
6.2 1 10Tt 112
6.3 THE CHIC SEMANTIC METADATA LIFECYCLE 1evtvuuuuteeereeusnnnaseeereeennneseeesssssnnnasesessssssnnsesessssssnnaseessssssnnnsesesssssnnnns 116
6.4 WHAT CAN BE ANNOTATEDT 11vvuvuuurnrnrnnnnnnnnnnnnnnnnnnnnnsnsnsnsasesasesssesesesesssesssssssessssssssssssssssssessssssesesesesesesssssseens 117
7 CONGCLUSIONS ...ovevitttettrttiteieietateare s e s e sasasasesesasesasasesasesssssesaesseeeseeseeeeeseseeseeeseeeseresereserens 118
8 o o o 2L 119
Figures
Figure 1: Brokered authentication for CHIC repository Web SErviCescccccceveiiirivcinnieeeeeeeeeeeesiennns 13
Figure 2: Example of conditions element in SAML tOKENccoviiiiiiiiiiiiiieceee e 15

Figure 3: The domain model of the clinical data repository with domain classes (blue), domain

enumerations (brown) and their relationships represented as connecting linesccccceeeecvvveeeennen. 17
Figure 4: The web-based user interface main view of the clinical data repository........ccccccceiiiininnnns 18
Figure 5: Updated entity relationship (ER) diagram of model/tool repositoryccccceeeevrercrveercnneenns 47
Figure 6: Updated entity relationship (ER) diagram of in silico trial repositorycccccceevecvveeeeecnnnnnn. 76
Figure 7: Prototype of RICORDO Template GUI.......cccouiiiiiiiiiiieee st e e essivrree e e e e e e s e e s sieaens 113
Figure 8: Selection of templates and search fUNCIONceviiiiiiiiiiiiii e 114
Figure 9: Interaction With OWLKBccuuiiiiiiiiiii et e e e e e s e s ssaarrre e e e e e e e s e e s ssaananes 115

Page 4 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Tables

Table 1: HTTP methods supported by the clinical data repository REST APl.....ccccceeeveeiiiiiiiiiiiiieeeeeeenes 18
Table 2: The pagination concept applied to large result sets returned by the clinical data repository 19

Table 3: The includable attribute demonstrated on the basis of the groups resource implemented by
the CliniCal data FEPOSITOIY c.ovvieiiiiiitcccrcee ettt ereseeeseaeeeaeaeaaaaaesesesesssenees 20

Table 4: The possible return states used by the clinical data repository to indicate a successful
COMPIELION OF @ FEQUEST ...ttt eesee e a bbb eaeeeeeeeeeaeens 21

Table 5: The possible return states used by the clinical data repository to indicate an unsuccessful
COMPIELION OF @ TEQUEST ...ttt eeeeaeeee e bbb aaeeeeeeeeeeeens 21

Table 6: The template used to describe the APl endpoint resources of the clinical data repository... 22

Table 7: Information for calling storeTool Web SErviceccccovvvvviiiiiiiiiii e 48
Table 8: Information for calling getAlITOOIS WED SEIVICE.....cccivviiiiiiiiiiiieee e 49
Table 9: Information for calling getTooIBYld WED SEIVICEcoovveiviiiiiiiiiieee e 50
Table 10: Information for calling getLatestToolByToolName web service.......ccccvvveeeeeeeeeiiniiccinnieneeen, 51
Table 11: Information for calling getPreviousVersions Web SErviCe......cccccvvvvvvvciiiieeeeeeeeeeeesrcciiiieneeens 52
Table 12: Information for calling deleteTooIByld WEb SEIVICeuuviiiiiiiiiiiiiiiiiiieeeeee e 53
Table 13: Information for calling storeParameter Web SErviCeccovveevieiiiiiiiiiiiiiieeeeee e 54
Table 14: Information for calling deleteParameter web Servicecccccccvvviiiiivcciiiieeee e, 55
Table 15: Information for calling getParametersByToolld web service........ccoovcvvviieeeeeeieiiiiiicciiiieeeenn, 56
Table 16: Information for calling getMandatoryParametersByToolld web service..........ccevvuvvrvvnnenn. 57
Table 17: Information for calling getinputParametersByToolld web Servicecccccceeveeeeiiniicinnvnnennn. 58
Table 18: Information for calling getOutputParametersByToolld web serviceccccceeveeveviicnvniinnennn. 59
Table 19: Information for calling storeProperty Web SErvicecccuvvviieiiiiiiiiiiicieeeee e 60
Table 20: Information for calling getAllIProperties Web SErviCecccccceeeeeiiiiiiiiiiiiieeeeeee e 61
Table 21: Information for calling getPropertyByld Web SEervicecccccceeeiiiiiiiciiiiieieeeeee e, 62
Table 22: Information for calling storePropertyValue Web Service.....cccccccvvviviviiiiiieeeieiee e, 63
Table 23: Information for calling deletePropertyValue wWeb Servicecccccevvvvceiiiieeeeiiee e, 64
Table 24: Information for calling getPropertyValuesByToolld web service........cccovvvveeeeeeeiiiiiccinninnennn. 65
Table 25: Information for calling deletePropertyByld wWeb Serviceccccccvvvviiiciiiieeeieeeeeeiieeeen, 65
Table 26: Information for calling storeReference Web SErviCe.......covvvveiieiiiiiiiiciiiiieeeeeee e 66
Table 27: Information for calling deleteReferenceByld web service......ccccccoovvviiiieeeeeiiinincciieeeen, 68
Table 28: Information for calling getReferencesByToolld Web SEervicecoovvevvvvveeeeiieeeiininciiineeen, 69
Table 29: Information for calling getAXes WED SEIVICEuuiiiiiiiiiicciee e 70
Table 30: Information for calling storeFile Web SErVICe......ciiiviiiiiiiiiii e 71

Page 5 of 121

Y

N

ay

C H I C Grant Agreement no. 600841

Computational Horizons

in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:

Information for calling deleteFile Web SErviCe........oovvviiiiiiiiiiiiii e 72
Information for calling getFileByld Web Service........ooovviiiiieiiiiiiiiiieeeeee e 73
Information for calling getFilesOfKind Web SErviCeccovvvveeiiiiiiiiniciiiieeeeee e 74
Information for calling storeTrial Web Servicecccoovvviiiiiieii e, 77
Information for calling getAllTrials Web SErviCe........coovvuiiiiiiiiiiiei e 78
Information for calling getTrialByld Web SErviCecoccuuiiriiieiiiieiiiieeeeee e 79
Information for calling getTrialByModelld Web Service......ccccccvvvviinvcciiiiiieeeieeee e, 80
Information for calling deleteTrialByld Web SErviCecccvvveeeiiieiiiiniiiiieeeeee e 81
Information for calling storeExperiment Web Service.......oooccccvviiiiinicciiiiieeeee e, 82
Information for calling getAllExperimentsByTrialld web servicecccocvvveeeieiiiiniicciniinneenn, 83
Information for calling getExperimentByld Web Service......ccccccvviiiviiiiiiiieeeieee e, 84
Information for calling getExperimentStatusByld web service.......occccuvviiveeiiiiiiiiiiicciineeen, 85
Information for calling getExperimentsByStatus Web Serviceoocccvvviveeeeeeeeeeesicciniineeen, 86
Information for calling updateExperimentStatus web servicecocccvvviveeeeieiiiiiincciiineeenn, 87
Information for calling deleteExperimentByld Web Service.......ccccovvevirriveeeeiieiieesiciiieeeen, 88
Information for calling storeMiscellaneousParameter web Serviceccccccceeeeveeviccnniennennn. 89
Information for calling getAllMiscellaneousParameters web service.......cccccccevvevvicciniennenen. 90
Information for calling getAllMiscellaneousParametersByExperimentld web service.......... 91
Information for calling getMiscellaneousParameterByld web serviceccccccevvvvivrnvinnnnn. 92
Information for calling deleteMiscellaneousParameterByld web servicecoeeuvvvineeenn. 93
Information for calling storeSubject Web Servicecccuvviieeiiiiiiiiinieeeee e 93
Information for calling deleteSubjectByld Web SErviceccccccvviviiniciiiiiieeeee e, 95
Information for calling getAllSubjects Web Service.......ccovvivieeiiiiiiiinicc e, 95
Information for calling getSubjectByld Web SErvicecoovvveeiiiiiiiinicieeeeee e, 96
Information for calling storeTrReference Web SErviCecccccvveeiiiriciiiiieieeeee e 97
Information for calling getAllTrReferences Web Servicecccccvviviiniciiiiiiieeeiee e, 99
Information for calling getTrReferencesByTrialld web serviceccooovuvviiiveeiieeeiiiiiiccnnns 100
Information for calling getTrReferencesByExperimentld web servicecccccceeevvviiniinnnnns 101
Information for calling deleteTrReferenceByld web servicecccccovvviiiiiiieeeieiiiiniccins 102
Information for calling storeLinkToReference Web Servicecccccccvevvvicivivieeeeeeeeeeeesccinns 102
Information for calling deleteReferencelLinkByld web serviceccoevvvviiiieeiieieiiiiiiiccnns 103
Information for calling getTrAXes Wb SErviCeccoiiviiiiiiiiiiiie e 104
Information for calling storeTrFile Web SErviCeccovvvviiiiiiiiiiiiiii e 105
Information for calling deleteTrFile Web Serviceoovvcuiiiiiieiiiiieeeee s 107
Information for calling getTrFileByld Web Serviceooocviviiiieiiiiiiiireeeeee s 107

Page 6 of 121

Y

N ap
C H I C Grant Agreement no. 600841
D8.3 - Implementation of the interfaces of the CHIC repositories
Table 66: Information for calling getTrLatestFilesBySubjectld web servicecccccvvvveeeieeiiiiinnicnnns 108
Table 67: Information for calling getTrFilesOfKind web Service.......ccovvvveeeiiiiiiiiiicciiiieeeeee e 109
Table 68: Information for calling getTrPreviousVersions Web Servicecccccccoevvvvcivivireeeeeeeeeiessscninns 110

Page 7 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

1 Executive Summary

The co-ordinated management of data and models is crucial for cancer studies in CHIC, as this project
is developing clinical trial driven tools, services and secure infrastructure that support the creation of
multiscale cancer hyper-models. The latter are defined as choreographies of component models,
each one describing a biological process at a characteristic spatiotemporal scale, and of relation
models/metamodels defining the relations across scales.

The development of a secure and function-rich hypermodelling infrastructure consisting primarily of
a hypermodelling editor and a hypermodelling execution environment is a central generic VPH
geared objective of CHIC. In order to render models developed by different modellers semantically
interoperable, an infrastructure for semantic metadata management must interoperate with
repositories for clinical and in-silico trial data, as well as models and tools. Facilitated operations will
range from automated dataset matching to model merging and managing complex simulation
workflows.

The following entities have now been developed: a hypermodel repository, a hypermodel-driven
clinical data repository, a distributed metadata repository and an in silico trial repository for the
storage of executed simulation scenarios, an image processing toolkit, a visualization toolkit and
cloud and virtualization services. The key aim of the CHIC infrastructure is to ensure that these
distinct entities are able to communicate effectively in support of hypermodelling studies. To that
end, this document is focused on providing a technical account of the interfaces for four of these
resources, namely: the hypermodel repository, the clinical data repository, the metadata repository
and the in silico trial repository. In particular:

Clinical data repository

The fully implemented API is presented, including the HTTP methods used, the applied pagination
concept, resource addresses, accepted parameters, possible requests, responses and errors.
Additionally, a first version of the external timeline tool developed by BED has been integrated into
the data repository interface. Currently, the clinical data repository stores nephroblastoma and lung
data but is fully prepared for brain and other data.

Model & tool repository

The model & tool repository is already able to store models and tools such as linkers and data
transformation tools which are needed for the construction of hyper-models. Apart from models and
tools, this repository is also able to store descriptive information of models, parameters (input and
output), properties, references and files. This deliverable provides a concrete documentation for all
CHIC partners so as to be able to consume model/tool repository’s web services in order to view,
save and delete repository’s content.

In-silico trial repository

This section discusses how to access information about the conducted in silico trial, such as hyper-
model’s input, original input (medical data without any processing), hyper-model’s output and
information about the hyper-model used in the trial. Specifically, the authentication mechanism for
repository web services, as well as relevant API calls are illustrated and documented.

Semantic metadata repository

The use of W3C approved formats for metadata triples provides a semantically meaningful and highly
standardised way of storing fact about CHIC resources. In this deliverable, we describe the interfaces
to the RICORDO-based metadata management suite, which includes: the RDFStore Templating
Engine, the Web Ontology Language Knowledge Base (OWLKB), as well as the Local Ontology Lookup
Service (LOLS).

Page 8 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

2 Introduction

2.1 Purpose of this document

The purpose of this document is to provide users and developers of the CHIC hypermodeling
infrastructure with a detailed overview of the methods available for interaction with the four key
repositories of the CHIC framework, namely: those for clinical data, models & tools, in-silico trial
data, as well as semantic metadata. An introductory note for the interface functionalities associated
with these four resources is provided below.

CLINICAL DATA

The clinical data repository will permanently host all the medical data produced or collected by the
CHIC project. The data provided by the clinical environment will pass through de-identification and
(pseudo)-anonymization processes, before being accepted and stored by the clinical data repository.
In its prototype implementation, which has been described in Deliverable “8.2 — Prototype
implementation of the CHIC repositories”, the clinical data repository is already able to import and
export data with the help of the simple and user-friendly web-based user interface. In this way the
data can be sustained after the expiration of the project’s lifetime and reused and exploited
continuously within the limits allowed by the legal framework of the project. In the end, the clinical
data repository will contain for each patient all the relevant medical data including imaging data,
clinical data, histological data and genetic data. To achieve a loosely coupled exchange of data
between applications, the clinical data repository makes use of the REST (Representational State
Transfer) architectural principle. Consumers of the REST APl only need to know the resource address
and how to make a request to that resource. How the resource actually gets its data is completely
hidden from the consumer. This allows other services of the CHIC environment to programmatically
access all the relevant medical data including imaging data, clinical data, histological data and genetic
data.

In this deliverable we present the fully implemented API based on the general concepts introduced in
the first deliverable “8.1 — Design of the CHIC repositories”. The description of the API includes the
HTTP methods used, the applied pagination concept, resource addresses, accepted parameters,
possible requests, responses and errors. Ultimately, the functionalities offered by the APl match the
ones offered by the web-based user interface. Additionally, a first version of the external timeline
tool developed by BED has been integrated into the data repository interface. The timeline tool itself
leverages the functionalities provided by the clinical data repository REST API. All objects can be
displayed within the graphical environment and the datasets can be directly downloaded from the
timeline interface. All components of the clinical data repository have been successfully deployed to
the private cloud infrastructure provided by FORTH. The API documentation can be accessed by the
following URL https://cdr-chic.ics.forth.gr/api/help. Furthermore, continued data exchange between
the clinicians and researchers through the Trusted Third Party could be successfully conducted.
Currently, the clinical data repository stores nephroblastoma and lung data but is fully prepared for
brain and other data.

MODELS & TOOLS

The model & tool CHIC repository stores cancer models, spanning from models of generic
fundamental biomechanisms involved in cancer progression and treatment response, such as cell
cycle and cell metabolism, to complex multiscale models of various types of cancer. In its prototype
implementation, which has been described in Deliverable “8.2 — Prototype implementation of the
CHIC repositories”, the model & tool repository is already able to store models and tools such as
linkers and data transformation tools which are needed for the construction of hyper-models. Apart

Page 9 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

from models and tools, this repository is also able to store descriptive information of models,
parameters (input and output), properties, references and files. Since the back-end and the graphical
user interface of the repositories has been described in Deliverable 8.2, this deliverable focuses on
the implementation of the web services which are needed in order for the contents of model/tool
repository to be exposed to other CHIC components, such as the hypermodelling editor and the
hypermodelling execution framework. Consequently, this deliverable aims to be a concrete
documentation for all CHIC partners so as to be able to consume model/tool repository’s web
services in order to view, save and delete repository’s content.

IN-SILICO TRIAL DATA

Apart from the web services of model/tool repository, this deliverable presents the implementation
and documentation of in silico trial repository’s web services. In silico trial repository is used for the
persistent storage of the simulation scenarios and the in silico predictions. In silico trial repository’s
web services are needed so that the in silico trial repository will successfully interact with the
hypermodelling executional environment, in order to automatically store the outcome of the
simulation and all the related data that constitute the in silico trial. Moreover, information about the
conducted in silico trial, such as hyper-model’s input, original input (medical data without any
processing), hyper-model’s output and information about the hyper-model used in the trial, can be
automatically accessed, updated and saved by other CHIC components through in silico trial
repository’s web services.

Implementation of interfaces of model/tool and in silico trial repositories are presented in this
deliverable in the same chapter (chapter 4) as both repositories reside in the same virtual machine,
use the same web application servers and have been both developed using the same web application
framework (Django). Chapter 4.1 explains the reason why the usage of web services, and especially
the usage of RESTful application programming interfaces, provides major benefits to CHIC technical
architecture. Chapter 4.2 presents the brokered authentication mechanism for model/tool and in
silico trial repository web services. More specifically, chapter 4.2 aims to being the reference point
for authentication procedure in the aforementioned repositories. The updated entity relationship
diagrams of model/tool and in silico trial repositories on which the application programming
interfaces are based, are presented in chapters 4.3 and 4.5 respectively. Last but not least, the
chapters 4.4 and 4.6 aim at presenting all the necessary information and documentation, which is
essential in order for the client to call model/tool, and in silico trial repository web services
respectively. The description of the web service, the HTTP method used, the parameters, the
returned object and the url of the service are all described in chapter 4.4 for model/tool repository
and in chapter 4.6 for in silico trial repository.

SEMANTIC METADATA

In addition to the data itself, CHIC also stores and generates metadata: data about data. In past
years, an ad hoc approach has often been taken to metadata, and this has resulted in a lack of
interoperability. CHIC will take a different approach. By using standard W3C approved formats for
storing and transmitting metadata, CHIC achieves a high level of interoperability, enabling future
research to make use of CHIC's metadata with greater ease. Metadata is stored in the form of so-
called triples, the building block of RDF (the Resource Description Framework), a semantically
meaningful and highly standardised way of storing facts, which forms the backbone of the semantic
web. Each triple has three components, which mimic the basic structure of the prototypical English
sentence: the first component is the ‘subject’; the second component is the ‘relation’ (analogous to
the English verb); the third component is the ‘object’. These so-called triples play the role of atoms
in the physics of knowledge representation: arbitrarily sophisticated fragments of knowledge can be

Page 10 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

broken down into these triples, and yet a machine of fixed sophistication suffices to parse and
understand them. In the future, when other researchers want to make usage of CHIC metadata, it
will not be necessary to spend time and money reverse-engineering CHIC-specific data storage
formats. Rather, any of a number of off-the-shelf programs for dealing with triples can be put
straight to use.

A suite of software has been developed for CHIC to facilitate creation, storage, and querying of
CHIC’s metadata. This suite, consisting of three components, is collectively known as RICORDO. lIts
three components are:

1) The RDFStore Templating Engine, which facilitates creation of query templates so that the end-
user doesn’t need to know the complicated querying languages that are ordinarily required in order
to query RDF triple databases;

2) The Web Ontology Language Knowledge Base (OWLKB), which provides a convenient APl for
performing sophisticated semantic reasoning queries over the ontologies behind CHIC's metadata;
and

3) The Local Ontology Lookup Service (LOLS) which provides lightning-fast translation between
standardised (but not human readable) identifier strings used for triple stores, and human-readable
labels describing them.

These three components, collectively comprising the RICORDO suite, each provide their services via
APls, engineered to facilitate integration into the various other components of CHIC. The servers,
which serve the RICORDO APIs, have been installed on CHIC machinery and they are running
smoothly, ready to handle whatever metadata tasks are needed.

Page 11 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

3 RESTful web services and authorization

3.1 Repositories make use of RESTful application programming interfaces

CHIC repositories, are already capable of allowing users (clinicians, researchers, etc.) to interact with
them through the user interface. Even if the user interface is one of the most important parts of the
repositories, as it determines how easily the user can interact with them, it does not on its own meet
the needs of the CHIC project, of making use of a service oriented architecture (SOA). SOA is an
approach used to create an architecture based upon the use of services. Services (such as RESTful
web services) carry out some small function, such as producing data, validating a client, or providing
simple analytical services.

The use of web services in CHIC provides major benefits:

* In contrast to the use of large applications, which tend to be “information silos”, that cannot
readily exchange information with each other, the use of finer-grained software services
gives freer information flow within the CHIC project. Integrating major applications is often
expensive. SOA can save integration costs.

* Organizing internal software as services makes it easier to expose its functionality externally.
This leads to increased visibility that can have business value as, for example, when the
model repository makes the tracking of a new model’s storage visible to the users
(researchers, clinicians, etc.), increasing researcher’s satisfaction and reducing the costly
overhead of status enquiries.

* The processes within the CHIC project are mostly dependent on the supporting software. It
can be hard to change large, monolithic programs. This can make it difficult to change.

* Business processes are often dependent on their supporting software. It can be hard to
change large, monolithic programs. This can make it difficult to make changes to clinical
scenarios in order to meet new requirements (arising, for example, from changes in
legislation) or to take advantage of new opportunities in in Silico Oncology. A service-based
software architecture is easier to change — it has greater organizational flexibility, enabling it
to avoid penalties and reap commercial advantage. (This is one of the ways in which SOA can
make a project more “agile”).

In this contect, CHIC repositories make use of RESTful web services. An overview of the main entities
and the design of the standardized interfaces of the repositories has been described in deliverable
“D10.2 - Design of the orchestration platform, related components and interfaces”. While the
aforementioned deliverable describes the design of the interfaces, this deliverable aims at describing
the implementation of interfaces by using RESTful web services.

REST (Representational State Transfer) is an architectural style and an approach to communications
that is often used in the development of web services. By using a decoupled architecture, REST has
become a popular building style for cloud-based APIs, such as those provided by Amazon, Microsoft
and Google. When web services use REST architecture, like in CHIC project, they are called RESTful
APIs (Application Programming Interfaces). REST typically runs over HTTP (Hypertext Transfer
Protocol) and emphasizes that interaction between clients and services is enhanced by having a
limited number of operations. Flexibility is provided by assigning resources their own unique URIs
(Universal Resource |dentifiers). As each operation uses a specific HTTP method (POST, GET, PUT,
DELETE), REST avoids ambiguity. CHIC Repositories make use of the 4 HTTP methods, POST, GET,
PUT, DELETE in order to perform create ,read, update and delete operations respectively.

Page 12 of 121

gqp[b]dp

C H I C Grant Agreement no. 600841

e D8.3 - Implementation of the interfaces of the CHIC repositories

It has been decided that CHIC repositories should make use of RESTful application programming
interfaces, after taking into account the following:

* RESTful web services are easy to leverage by most tools, including those that are free and
inexpensive. (No expensive tools require to interact with the web service).

* RESTful web services are easy to scale. Thus, REST is often chosen as the architecture for
services that are exposed via the Internet (like Facebook, Twitter, and most public cloud
providers).

* REST uses a small message format and as a result it provides better performance, as well as
lower costs over time. Moreover there is no intensive processing required.

* REST is designed for use over the Open Internet/Web, making it a better choice for Web
scale applications, and certainly for cloud-based platforms.

3.2 Authentication in repository web services

CHIC repository web services are consumed by non browser clients, like the hypermodelling
execution framework, or the editor. As web services are typically stateless and a different security
context can be required for each message, message level security is preferred. For REST web
services, CHIC makes use of WS-* security components. More specifically, in order for the client to
access resources from the repositories, it is essential to call the WS-Trust Secure Token Service to
request a SAML security token and pass it through the HTTP Authorization header to repository REST
services. More specifically, the client needs to send a SOAP (Simple Object Access Protocol) request
containing an RST (Request Security Token) to the STS. The STS then returns the identity assertion as
a SAML token embedded in a RSTR (Request Security Token Response). The base 64 encoded
compressed SAML token can then be passed to the rest service, through the http authorization
header. The sequential diagram which depicts the brokered authentication mechanism for CHIC
repository web services is presented in figure 1.

T
»

Send SOAP request containing RST

Issue identity assertion asa SAML token embedded in a RSTR

Request resource with SAML token-—»
| |
| |
| |
| |
| |
| |
| |

Figure 1: Brokered authentication for CHIC repository web services

Page 13 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

As shown in figure 1, CHIC repositories are known as service providers (SP) because both of them are
entities that provide web services. Consequently, three different components are engaged in the
process of authorization concerning the repositories. These components are the client, the service
provider (model/tool, in silico trial, clinical data, and semantic metadata repository) and the security
token service. - A brief description of these components is presented below:

Service Provider (SP)

A service provider is an entity that provides web services. The service provider relies on a
trusted security token service for authentication and authorization. In SAML, the XML-
standard for exchanging data, the security domains that information is passed between are a
service provider (SP) and an identity provider (IdP). SAML’s service provider (SP) depends on
receiving assertions from a SAML authority, or asserting party, a SAML identity provider.

Identity Provider (IdP)

An identity provider (IdP), sometimes called an identity service provider or identity assertion
provider, is an online service or website that authenticates users on the internet by means of
security tokens, one of which is SAML 2.0. In the WS-Federation model an identity provider is
a security token service (STS). Service providers depend on an identity provider or security
token service to do the user authentication.

Security Token Service (STS)

Security tokens, sometimes called identity tokens, authentication tokens or even software
tokens, play a major role in identity management as they are the device of choice for
authenticating and authorizing a user’s identity or “digital identity”. A security token service
(STS) is the web service that issues security tokens. In essence, an STS is a WS-Trust identity
provider and a SAML assertion in WS-Trust is a kind of security token.

Before CHIC repositories serve the non browser client (client calling web services), it has to be
ensured that the client is authorized to access the content of the repositories. Consequently the
repositories should proceed to the following steps:

CHIC repositories should verify XML signature

As already reported, the client will authenticate to the security token service which
generates the SAML authentication assertion (SAML token) to prove that it has authenticated
the client. The security token service will sign the assertion as proof that only it could have
signed the assertion, and also to guarantee the integrity of the assertion. Subsequently CHIC
repositories verify xml signature by using an xml security library in order to ensure that that
the SAML token has been provided by CHIC security token service component. Model and in
silico trial repositories make use of an xml security library named dm.xmlsec.binding1.3.2.

CHIC repositories should check audience element of SAML token. Audience element is a
validity condition for an assertion. In particular it declares that the assertion’s semantics are
only valid for the relying party named by URI in that element. Consequently, the client is
authorized to CHIC repository web services if and only if the xml audience element has the
correct value which is usually the urn of the server in which the repository is stored.
Audience element is depicted in figure 2.

CHIC repositories should check NotOnOrAfter and NotBefore attributes of SAML token
conditions element. These attributes declare that the assertion’s semantics are only valid for
a time period which starts according to NotBefore value and ends according to NotOnOrAfter

Page 14 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

value. In other words, if the date defined in the value of NotBefore attribute is after the
current date of server or the date defined in the value of NotOnOrAfter attribute is before
the current date of server, then the client is not authorized to consume repository web
services. SAML token conditions element is depicted in figure 2.

<saml2:Conditions NotOnOrAfter="2015-07-18T08:25:06.711Z" NotBefore="2015-
07-17708:25:06.7112'> 1 ,
) <Sam|2:AUdienCERQStriCti0n> NotOnOrAfter attribute NotBefore attribute
<saml2:Audience>https://139.91.210.27</saml2:Audience>
</saml2:AudienceRestriction>
</saml2:Conditions>

In order for the client to consume repository web services, the value of xml audience element
should be the same with the urn of the server in which the repository is stored.

Figure 2: Example of conditions element in SAML token

After the verification of the XML signature and the checking of the conditions element of SAML
token, the client is ready to consume CHIC repository web services which are described in the
following chapters of this document.

Page 15 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

4 Interfaces of the Clinical Data Repository

4.1 Introduction

The clinical data repository will permanently host all the medical data produced or collected by the
CHIC project. The data provided by the clinical environment will pass through de-identification and
(pseudo)-anonymization processes, as described in chapter 3 of deliverable D8.2. Additionally,
interfaces that will allow to import and export the contents of the clinical data repository will be
developed. In this way the data can be sustained after the expiration of the project’s lifetime and
reused and exploited continuously within the limits allowed by the legal framework of the project.
The export services that will be created will also assist in this direction, as many of the data sets to be
gathered by the CHIC project will be reusable by future projects. The clinical data repository will
contain for each patient all the relevant medical data including imaging data, clinical data,
histological data and genetic data.

The focus in this deliverable is on the interfaces of the clinical data repository. Foremost, the
authentication mechanism is explained in chapter 4.2. All general concepts introduced in deliverable
D8.1 have been translated to the use case format in deliverable D8.2 and are now transformed into
interfaces in chapter 4.4.

4.2 Authentication

The clinical data repository makes use of the security framework introduced in Deliverable “D5.2 -
Security guidelines and initial version of security tools”. Therefore, the users are not directly
authenticated by the clinical data repository (Service Provider) itself but rather by the CHIC
authentication broker (Identity Provider) to support Single Sign-On (SSO). This procedure is called
brokered authentication.

The CHIC security framework further distinguishes between brokered authentication for web services
including REST and for web sites. As the clinical data repository provides complete access to the
features of the database with the help of REST interfaces, the Security Token Service (STS) provided
by CHIC is fully integrated in the authentication process. Before calling a REST interface of the clinical
data repository the client needs to send a SOAP (Simple Object Access Protocol) request containing
an RST (RequestSecurityToken) to the STS. The STS then returns the identity assertion as a SAML
token, embedded in a RSTR (RequestSecurityTokenResponse). The SAML token can then be passed to
the REST interface through the HTTP authorization header.

The following procedure is needed in order to supply a SAML token to the clinical data repository:
1. Getthe SAML token from the CHIC Security Token Service.
2. ZLIB (RFC 1950) compress the retrieved SAML token.
3. Base64 (RFC 4648) encode the compressed SAML token.
4, Supply an "Authorization" header with content "SAML auth=" followed by the encoded
string.
4.3 Domain model

The domain model of the clinical data repository, which has been introduced in deliverable D8.1, is
illustrated in figure 3 for the sake of completeness. Apart from the following modifications, the
domain model stays the same as in deliverable D8.1:

Page 16 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

e D8.3 - Implementation of the interfaces of the CHIC repositories

* The Rawlmage and Segmentationimage entities have been replaced by the Previewlmage
entity. It contains the information about the location of an extracted thumbnail image stored
on the clinical data repository file system.

* The snapshot information about a patient has been extracted from the Patient entity to a
standalone entity called PatientSnapshot. All information about the patient such as age,
height, weight, sex, etc. is stored by this entity. The Patient entity is responsible for the
system-wide unique pseudonym/identifier only.

* GenomicSeries, GenomicSample and GenomicPlatform entities have been added to support
genomic data.

¥ Role Y/ Application Y/ ApplicationLog /e
OntologyType
1 1
”‘ 1 1
Y Group Y User Y GenericObject \y “enumeration»
1 OntologyTerm
0.1 1 1
¥ Container - Y ObjectVersion 1 =Y ObjectLink
1
1 11 a
N wenumerations
ObjectVersionType
Y PreviewImage ¥ Data ‘
1
\/ selumentions Y/ PatientSnapshot Y GenomicSeries Y GenomicSample Y/ GenomicPlatform
PatientSex
1 0.1
Y Segmentation £7Z Raw 87 Study 87 Patient Y StudyData Y StudyDefinition
1 1 1
1
V «enumeration»
Modality

Figure 3: The domain model of the clinical data repository with domain classes (blue), domain enumerations
(brown) and their relationships represented as connecting lines

4.4 Web-based user interface

The prototype implementation of the web-based user interface offers a main view illustrated in
figure 4 which serves as entry point for almost all functionalities described throughout the user guide
introduced in the previous deliverable D8.2. On top, an input field enables the end-user to search for
datasets (1). On the left side, the folder explorer enables the user to organize data (2). MyData is the
location of the user’s data; MyGroups is the default collaboration folder accessible to all group
members; MyProjects are folders to organize data into personal projects; SharedFolder are folders of
others which are shared to the user. In the middle of the main view, the toolbox enables the user to
initiate batch commands for multiple objects or folders (3). A preview image assists the user to

Page 17 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

identify datasets (4). Several icons enable the user to display additional information about the
corresponding dataset as requested (5). The file name introduced by the clinical data repository is
based on a constructed template (6). The template is updated if the information is available
otherwise XX is used as a placeholder.
- oI Ed
© Browse/Results - CHIC Clin... +

&« | forth.gr/Home/Brows Q. ~ SuchMaschine r B ¥ A 4 =~ | =

CHICO Browse MyRepository ¥ Forum Timeline Admin~ 0 (i) ¥ (0) & niklrl Logout @ =
B Places e

&MyData :

iyGrous Browse/Results

£ MyProjects

@ SharedFolders
Actions ¥ Manage selected v Display selected v
X Page Navigation

Search results for '@Brain’ : 39 % Clear search
A Page-Top
anatomical region \gender\ /CDR Id o
~ CDR.Head.012Y.0.CT.296.000.dcm @ (a)% Bi= ® o D B 2/17/2015 11:51:15 AM —

o age/ \modality niklrl =
Legend o
1 Full text search 0O CDR.Brain X\ R.59.000.mha €) % I i= @) BT 2/28/20146:18:16 PM _
2 Folder explorer . n buchp2 =
3 Toolbox L
4 Preview image
5 |cons to display ad- CDR.Brain.XX.0.MR.58.000.mha € (a) % =% u D EIE) 8/28/2014 6:18:12 PM =
ditional information Flair buchp2 =
6 CDR file name

1 R corBrinXXO0MR57.000.mha @ E % KIS M D ET) 8/28/20146:18:08 PM = v

Figure 4: The web-based user interface main view of the clinical data repository

4.5 RESTful application programming interfaces

The clinical data repository makes use of the REST (Representational State Transfer) architectural
principle to exchange data between applications in a loosely coupled way. Consumers of the REST
API only need to know the resource address and how to make a request to that resource. How the
resource actually gets its data is completely hidden from the consumer. This chapter describes the
HTTP methods used, the applied pagination concept, resource addresses, accepted parameters,
possible requests, responses and errors.

4.5.1 HTTP method definitions

A method refers to HTTP methods (sometimes referred to as verbs) which indicate the desired action
to be performed on the identified resource. The clinical data repository interprets the received HTTP
methods as follows:

Table 1: HTTP methods supported by the clinical data repository REST API

HTTP method Description
GET Getting a resource. (idempotent)
POST Creating a resource. (not idempotent)

Page 18 of 121

ED[‘U;Z'

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

PUT Updating a resource. (idempotent)
DELETE Deleting a resource. (idempotent)
OPTIONS Getting information about the options available on the specific resource.

An idempotent HTTP method can be called many times without different outcomes.

Additionally, the REST APl embraces the Open Data protocol (OData). OData offers many different
query options but the current implementation of the clinical data repository using ASP.NET Web API
makes use of Sfilter only. This query option is very powerful when it comes to filtering large result
sets based on multiple conditions. It is described more detailed in chapter 4.5.5 Annotation & Search.

Although ASP.NET Web API supports JavaScript Object Notation (JSON) and Extensible Markup
Language (XML) by default, the implemented and tested REST APl makes use of JSON only to send
and receive data. Only the UTF-8 character encoding is supported for both requests and responses.

4.5.2 Pagination

Pagination is the process of dividing a document into discrete pages in order to keep the loading time
on a predictable level. Requests with large result sets may timeout or be truncated, therefore most
resources returning a large result set are paginated by default.

Table 2: The pagination concept applied to large result sets returned by the clinical data repository

Parameter name Value type Default value | Description
rpp int 25 Defines the amount of included results per
page.

Allowed values: 10, 25, 50, 100, 250, 500

page int 0 Defines the current page index.

Allowed values: 0, 1, 2, ...

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects?rpp=25&page=3

Example Response

{

"totalCount": 99,
"pagination": {
"rpp": 25,

"page": 3
},

"items": [

1,
"nextPageUrl": "https://cdr-chic.ics.forth.gr/api/objects?rpp=25&page=4"

Page 19 of 121

yﬂ!”qp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

4.5.3 Include

Include is a special parameter supported by several resources. It enables the caller to define which
properties should be included in the response. This will reduce the amount of calls needed to get all
information. Includable properties are marked under additional information of the resource
response description. It is possible to include multiple properties at the same time by delimiting the
property names by a comma.

Table 3: The includable attribute demonstrated on the basis of the groups resource implemented by the
clinical data repository

Name Description Type Additional information
Id The identifier of the group integer None.

Name The name of the group. string Filterable

Chief The chief of the group. BaseViewModel Includable

SelfUrl The URL to the resource. string None.

Example Request without include

GET https://cdr-chic.ics.forth.gr/api/groups/1

Example Response without include

{

"id": 1,

"name": "Test group",

"chief": {

"selfUrl": "https://cdr-chic.ics.forth.gr/api/users/2"

} 14

"selfUrl": "https://cdr-chic.ics.forth.gr/api/groups/1"
}

Example Request with include

GET https://cdr-chic.ics.forth.gr/api/groups/1?include=chief

Example Response with include

{
"id": 1,
"name": "Test group",
"chief": {
"id": 2,
"username": "niklrl",
"selfUrl": "https://cdr-chic.ics.forth.gr/api/users/2"
} 14
"selfUrl": "https://cdr-chic.ics.forth.gr/api/groups/1"
}

Page 20 of 121

S\;D[oj"V

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

4.5.1 Requests, Responses, and Errors

A successful completion of a request returns one of three possible states:

Table 4: The possible return states used by the clinical data repository to indicate a successful completion of

arequest

HTTP status code Description

200 OK The default state. On GET requests, the response contains all the requested
objects. On PUT and POST requests, the requested updates have been done
correctly on the persistence layer.

201 Created Returned on successful POST requests when one or more new objects have

been created. The response contains information on the newly created
objects, e.g. identification values.

204 No Content

Returned on successful DELETE requests.

An unsuccessful completion of a request returns one of six possible states:

Table 5: The possible return states used by the clinical data repository to indicate an unsuccessful completion

of a request

HTTP status code

Description

400 Bad Request

The format of the URL and/or of values in the parameter list is not valid. Or
the URL indicates a non-existing action.

401 Unauthorized

Either the request does not contain required authentication information or
the authenticated used is not authorized to get a requested object or to do
the request updated operation.

404 Not Found

The URL is correct, but the requested object does not (or no longer) exist.

405 Method Not
Allowed

Different action methods may be restricted to one or more of the HTTP
methods (GET, PUT, or POST). The received request uses one that is not
allowed with the action method specified in the URL. In this case, other
parts of the URL are not validated.

500 Internal Server
Error

When a method causes an exception that has no adequate handling in the
method itself. Developers of client systems are kindly requested to report
these response states to the developing team and to transmit information
about the respective request and the response objects.

501 Not Implemented

May occur during development. The requested action has been specified
and documented, but not yet implemented.

Page 21 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

4.5.2 Resource description template

In order to describe the input and output of the APl endpoint resources the following template is
used.

Table 6: The template used to describe the APl endpoint resources of the clinical data repository

HTTP Method Resource name Requires Authentication? Q Yes / G No
Description A short text describing the resource.
Content-Type The Content-Type entity-header field indicates the media type of the entity-

body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

Parameters A list of all parameters accepted by the resource.

Example Request

An example request which can be sent to the resource.

Example Response

An example response returned by the resource.

4.5.3 Upload & Versioning

The clinical data repository is built around the concept of data objects (ObjectVersion), which
constitute the basic component of the system. These data objects can be any type of image file,
processed data, study data etc. This approach provides a large flexibility to the system in terms of
data formats, data organization and data exchange.

The system has been designed to support versioning. Data uploaded to the system are never deleted,
but multiple versions of an object can be stored in the database. This approach limits problems
associated with accidental deletion of data, while maintaining the flexibility to keep updating data
files. For example, the initial data of the clinical study concerning a patient can be uploaded before
the final examinations. Once the last examination has been performed, a new version of the file is
uploaded to the system, which enables modellers to have access to the latest information while
keeping the ability to see the history of the modifications.

As described in chapter “3 General workflow for data upload” of deliverable D8.2 data providers do
not directly upload to the clinical data repository. In a first step the data is uploaded from the
hospital to the Trusted Third Party (TTP). In a second step the data is uploaded from the TTP to the
clinical data repository.

POST upload ﬂ

Page 22 of 121

yﬂ!”qp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Description Uploads a supported file to the clinical data repository (e.g. DICOM,
Metalmage, Analyze, Nifti, CDISC ODM, MINiML, etc.)

Exactly one file can be uploaded per request. This resource should be used
to upload files smaller than 200MB.

Content-Type multipart/form-data

Example Request

POST https://cdr-chic.ics.forth.gr/api/upload HTTP/1.1
Content-Type: multipart/form-data; boundary="1234"
Content-Length: 161300

--1234
Content-Disposition: form-data; filename=sample.dcm

"content of sample.dcm"

--1234--

Example Response

{
"file": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/files/1"
},
"relatedObject": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}

}
chunked_upload?chunk={chunk

POST =l “tchunk} a
chunked_upload/commit?filename={filename}

Description The chunked upload resources can be used in order to upload large files.
Chunks can be any size up to 100 MB. A typical chunk is 4 MB. Using large
chunks will mean fewer calls and faster overall throughput. However,
whenever a transfer is interrupted, you will have to resume at the beginning
of the last chunk, so it is often safer to use smaller chunks.

Content-Type multipart/form-data

Parameters chunk (int) The number of the current chunk.
filename (string) The filename of the chunked upload to be committed.

Example Request

Page 23 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

1. Send a POST request equivalent to the one described in the upload resource to
https://cdr-chic.ics.forth.gr/api/chunked_upload?chunk=1 for the first chunk.

2. Repeatedly POST subsequent chunks by incrementing the number in the URL identifying the current
chunk.

3. After the last chunk, POST to
https://cdr-chic.ics.forth.gr/api/chunked_upload/commit?filename=sample.dcm

to complete the upload.

Example Response

{
"file": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/files/1"
},
"relatedObject": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}
}

The clinical data repository uses GenericObjects to extend the generic ObjectVersion concept. A new
version of a dataset (ObjectVersion) will have the same GenericObject as the ancestor. If, for
example, a clinical trial form has been update with new questions in the clinical trial software, a new
version will be generated keeping the same unique identifier as the original object. Based on this
identifier, a new version can be created in the clinical data repository. With this approach, the users
will still have access to the initial data version (through the GenericObject), but the new version will
be shown as the current version. Versioning is handled automatically by the upload resources. Once
uploaded the objects can be accessed by the resources listed consecutively.

objects
GET objects?rpp={rpp}&page={page}&include={include} ﬂ

Description Gets a paginated list of objects, which constitute the basic component of the
system.
Parameters include (string) Allowed properties to be included:
* License
* Files

* LinkedObjectRelations
* Ontologyltems
* OntologyltemRelations
* ObjectPreviews

* ObjectGroupRights

Page 24 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

* ObjectUserRights

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects?rpp=25&page=1 HTTP/1.1

Example Response

{
"totalCount": 26,
"pagination": {
"rpp": 25,
"page": 1
},
"items": [
{
see GET objects/{id}
}
1,
"nextPageUrl": null
}
OPTIONS objects G
Description Gets the available options for this resource. It includes information about
enum types.

Example Request

OPTIONS https://cdr-chic.ics.forth.gr/api/objects HTTP/1.1

Example Response

{
"types": [
{
"key": O,
"value": "None"

"key": 1,
"value": "RawImage"

"key": 2,
"value": "SegmentationImage"

"key": 3,
"value": "StatisticalModel"

Page 25 of 121

S\,D[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

" key" . 4 ,
"value": "StudyDefinition"
},
{
eryH: 5,
"value": "StudyData"
},
{
"key": 6,
"value": "SurfaceModel"
}
1,
}
GET objects/{id}?include={include} n
Description Gets the information of the object with the specified identifier.
Parameters id (integer) The identifier of the object.

include (string) Allowed properties to be included:

* See GET objects

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects/1 HTTP/1.1

Example Response

{
"sliceThickness": 0.4,
"spaceBetweenSlices": null,
"kilovoltPeak": 120.0,
"modality": {

"selfUrl": "https://cdr-chic.ics.forth.gr/api/modalities/3"
},
"id": 1,
"createdDate": "2015-08-24T12:41:03.9570000z",
"name": "CDR.Abdominal aorta.050Y.M.CT.1.000.dcm",
"description": null,
"ontologyCount": 1,
"type": 1,
"downloadUrl": "https://cdr-chic.ics.forth.gr/api/objects/1/download",
"license": null,
"files": {
"totalCount": 3,
"pagination": {
"rpp": 25,
"page": O
},

Page 26 of 121

gqp[b]dp

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

"items": [

{

"selfUrl":

b,
{

"selfUrl":

b,
{

"selfUrl":

}
1,

"nextPageUrl":

b,

"linkedObjects":

"totalCount":
"pagination":
"rpp": 25,
"page": O

},
"items": [

{

"selfUrl":

}
1,

"nextPageUrl":

b,

"https://cdr-chic.ics.forth.gr/api/files/2"

"https://cdr-chic.ics.forth.gr/api/files/3"

"https://cdr-chic.ics.forth.gr/api/files/4"

null

"https://cdr-chic.ics.forth.gr/api/objects/3"

null

"linkedObjectRelations": {

"totalCount":
"pagination":
"rpp": 25,
"page": O

},
"items": [

{

"selfUrl":

}
1,

"nextPageUrl":

b,

"ontologyItems":

"totalCount":
"pagination":
"rpp": 25,
"page": O

},
"items": [

{

"selfUrl":

}
1,

"nextPageUrl":

b,

1,
{

"https://cdr-chic.ics.forth.gr/api/object-1links/2"

null

"https://cdr-chic.ics.forth.gr/api/ontologies/0/3789"

null

"ontologyItemRelations": {

"totalCount":
"pagination":
"rpp": 25,
"page": O

},
"items": [

{

1,
{

Page 27 of 121

qu[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-
ontologies/0/13"
}
1,
"nextPageUrl": null
},
"objectPreviews": [
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1/previews/0"
},
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1/previews/1"
},
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1/previews/2"
}
1,
"objectGroupRights":
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-group-rights/49"
},
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-group-rights/50"
}
1,
"objectUserRights": null,
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}
PUT objects/{id} Q
Description Updates the object with the specified identifier.

Content-Type

application/json

Parameters id (integer) The identifier of the object.
Notes Properties annotated with the “Settable” attribute can be updated.
* Description
* License
* Modality
¢ SegmentationMethod
{
"sliceThickness": 0.4,
"spaceBetweenSlices": null,
"kilovoltPeak": 120.0,
"modality": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/modalities/3"
},

Page 28 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

"id": 1,
"createdDate": "2015-08-24T12:41:03.9570000z2",
"name": "CDR.Abdominal aorta.050Y.M.CT.1.000.dcm",
"description": "CHIC test description",
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}
DELETE objects/{id} fal
Description Deletes the unpublished object with the specified identifier.
Parameters id (integer) The identifier of the object.

Example Request

DELETE https://cdr-chic.ics.forth.gr/api/objects/1 HTTP/1.1

Example Response

HTTP/1.1 204 No Content

4.5.4 Linking

Each new dataset can be linked with any object already present in the repository. For example
anatomical structures can be segmented out of one or multiple medical images. Linking mechanisms
ensure that an uploaded segmentation file is not only associated with the correct patient’s data, but
also that the original images used to perform the segmentation task can be identified by the users of
the system. In the case of multimodal image segmentation, this implies that multiple links are
created to relate the segmentation file with each of the multi-modal original images. If available, the
system will make use of the meta-information stored in the files to automatically generate this
linking.

GET object-links/{id} fal
Description Gets the relation representing a link between two objects.
Parameters id (integer) The identifier of the relation.

Example Request

GET https://cdr-chic.ics.forth.gr/api/object-1links/1 HTTP/1.1

Page 29 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Example Response

{
"id": 1,
"description": "Link created based on patient information.",
"objectl": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
},
"object2": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-1links/1"
}
POST object-links Q
Description Creates a link between the provided objects.
Content-Type application/json

Example Request

{
"objectl": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
},
"object2": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
}
}

Example Response

{
"id": 1,
"description": "Link created manually by demo",
"objectl": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
},
"object2": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-1links/1"
}
DELETE object-links/{id} fal
Description Deletes the relation with the specified identifier representing a link between

Page 30 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

two objects.

Parameters id (integer) The identifier of the relation.

Example Request

DELETE https://cdr-chic.ics.forth.gr/api/object-1links/1 HTTP/1.1

Example Response

HTTP/1.1 204 No Content

4.5.5 Annotation & Search

In addition to the imaging and clinical data, each data object can be annotated with multiple
ontology terms. Initial investigations have been made to integrate an anatomical ontology; the
Foundational Model of Anatomy (FMA). The FMA is a symbolic representation of the canonical,
phenotypic structure of an organism; a spatial-structural ontology of anatomical entities and
relations which form the physical organization of an organism at all salient levels of granularity. The
ontology relies on a triplestore storage system and not in relations or tables. Therefore, a separate
system will be used to store the semantic information. Web based queries based on SPARQL will be
used to retrieve the information from the ontology for annotation and semantic search. The
approach is very flexible and allows to easily include multiple ontologies. In addition to the FMA,
additional ontologies will be included in a second step by integrating the RICORDO system. Based on
these annotations it will be possible to conduct semantically driven search queries to find datasets
containing the required anatomical structures or other properties.

OPTIONS ontologies G
Description Gets the available options for this resource. It includes information about
enum types.

Example Request

OPTIONS https://cdr-chic.ics.forth.gr/api/ontologies HTTP/1.1

Example Response

{
"types": [
{
"key": O,
"value": "FMA"
}
1
}

Page 31 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

GET ontologies/{type}?rpp={rpp}&page={page} ﬂ
Description Gets a list of ontology items of the specified ontology.
Parameters type (integer) The ontology type.

Example Request

GET https://cdr-chic.ics.forth.gr/api/ontologies/0 HTTP/1.1

Example Response

{
"totalCount": 1002,
"pagination": {
"rpp": 25,
"page": 0
} 14
"items": [
{
"id": 20394,
"term": "Body",
"type": O,
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/20394"
} 4
{
"id": 7197,
"term": "Liver",
"type": O,
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
} 4
] 14
"nextPageUrl": "https://cdr-
chic.ics.forth.gr/api/ontologies/0?2rpp=25&page=1"
}
GET ontologies/{type}/{id} n
Description Gets the information of the ontology item with the specified identifier.
Parameters type (integer) The ontology type.
id (integer) The identifier of the ontology item.

Example Request

GET https://cdr-chic.ics.forth.gr/api/ontologies/0/7197 HTTP/1.1

Example Response

Page 32 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

{

"id": 7197,

"term": "Liver",

" type "e. O ,

"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
}
GET ontologies/{type}/{id} n
Description Gets the information of the ontology item with the specified identifier.
Parameters type (integer) The ontology type.

id (integer) The identifier of the ontology item.

Example Request

GET https://cdr-chic.ics.forth.gr/api/ontologies/0/7197 HTTP/1.1

Example Response

{

"id": 7197,

"term": "Liver",

"type": O,

"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
}
GET object-ontologies/{type}/{id} ﬂ
Description Gets the relation between an object and an ontology item.
Parameters type (integer) The ontology type.

id (integer) The identifier of the object ontology relation.

Example Request

GET https://cdr-chic.ics.forth.gr/api/object-ontologies/0/2 HTTP/1.1

Example Response

{
"id": 2,
"position": O,
"type": O,
"object": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"

Page 33 of 121

S\,D[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

},
"ontologyItem": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-ontologies/0/2"
}
PUT object-ontologies/{type}/{id} ﬂ
Description Updates the relation between the object and the ontology item.
Parameters type (integer) The ontology type.
id (integer) The identifier of the object ontology relation.
Content-Type application/json
Example Request
{
"id": 2,
"position": O,
"type": O,
"object": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
},
"ontologyItem": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/20394"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-ontologies/0/2"
}
Example Response
{
"id": 2,
"position": O,
"type": 0,
"object": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
},
"ontologyItem": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/20394"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-ontologies/0/2"
}
POST object-ontologies/{type} n

Page 34 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Description Creates a relation between the object and the ontology item.
Parameters type (integer) The ontology type.
Content-Type application/json

Example Request

{
"position": O,
"type": O,
"object": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
},
"ontologyItem": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
}
}

Example Response

{
"id": 3,
"position": O,
"type": O,
"object": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
},
"ontologyItem": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/ontologies/0/7197"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/object-ontologies/0/3"
}

A URI with a Sfilter System Query Option identifies a subset of the entries from the collection of
entries identified by the resource path section of the URI. The subset is determined by selecting only
the entries that satisfy the predicate expression specified by the query option.

The expression language that is used in Sfilter operators supports references to properties and
literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true
or false) or any of the additional literal representations.

An example of filtering the ontology terms is given below and more examples can be found on the
official OData documentation.

GET ontologies/{type}?Sfilter={filter} n

Description Gets a filtered list of ontology items of the specified ontology.

Page 35 of 121

Y

N

ay

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Parameters

type (integer) The ontology type.

filter (string) The predicate expression used to filter the list.

Example Request

GET https://cdr-chic.ics.forth.gr/api/ontologies/0?
S$filter=startswith(Term, '"Right') HTTP/1.1

Example Response

{

"totalCount":

"pagination":

25,
0

" "o,

Ipp

npaqen :

b,

"items":

{

"id":
"term":
"type":
"selfUrl":

"id":
"term":
"type":
"selfUrl":

b,
1,

"nextPageUrl":

[

5832,
"Right lymphatic duct",

5831,
"Right bronchomediastinal lymphatic trunk",

72,

"https://cdr-chic.ics.forth.gr/api/ontologies/0/5832"

"https://cdr-chic.ics.forth.gr/api/ontologies/0/5831"

"https://cdr-

chic.ics.forth.gr/api/ontologies/0?S$filter=startswith (Term, 'Right"') &rpp=25&

page=1"
}

4.5.6 Validation

To ensure a high level of quality to the data stored in the repository, the system will support a multi-
step validation process. During the validation process the user can review the metadata extracted
from the data, include additional relevant information and finally publish the data object. Once
published, the new data object is accessible by the other users of the system having the appropriate

permissions.

o objects/unpublished n
objects/unpublished?rpp={rpp}&page={page}&include={include}

Description Gets a paginated list of unpublished / not validated objects of the current

user.

Page 36 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects/unpublished HTTP/1.1

Example Response

{
"totalCount": 3,
"pagination": {
"rpp": 25,
"page": 1
},
"items": [
{
see GET objects/{id}
}
1,
"nextPageUrl": null
}
o objects/published n
objects/published?rpp={rpp}&page={page}&include={include}
Description Gets a paginated list of published / validated objects of the current user.

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects/published HTTP/1.1

Example Response

{
"totalCount": 3,
"pagination": {
"rpp": 25,
"page": 1
},
"items": [
{
see GET objects/{id}
}
1,
"nextPageUrl": null
}
PUT objects/{id}/publish fal

Page 37 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Description Publishes / validates the object with the specified identifier.

Example Request

PUT https://cdr-chic.ics.forth.gr/api/objects/1/publish HTTP/1.1

Example Response

{
"id": 1,

"selfUrl": "https://demo.virtualskeleton.ch/api/objects/1"
}

4.5.7 Data organization

The clinical data repository allows each user to freely organize the data into his/her desired folder
structure for easy access to the data needed for his/her research. Hereby, data objects are not
physically moved or duplicated, but the system creates a reference to the data object, retaining the
original file permission and ownership. A folder structure created by one user can be directly shared
to others. Modifications made by one user will immediately be visible in the folder of the other
collaborators. The mechanism should allow efficient collaboration between modellers working on
the same tumour model. To simplify the collaboration within a group, the system provides a default
shared group folder, which is accessible and manageable by all members of the group.

o folders . . n
folders?rpp={rpp}&page={page}&include={include}

Description Gets a paginated list of folders.

Parameters include (string) Allowed properties to be included:

* ParentFolder

* ChildFolders

* ContainedObjects

* ContainedObjectRelations
* FolderGroupRights

* FolderUserRights

Example Request

GET https://cdr-chic.ics.forth.gr/api/folders HTTP/1.1

Example Response

{

Page 38 of 121

S\,D[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

"totalCount": 6,

"pagination": {
"rpp": 25,
"page": O
},
"items": [
{
see GET folders/{id}
}
1,
"nextPageUrl": null
}
GET folders/{id}?include={include} ﬂ
Description Gets the information of the folder with the specified identifier.
Parameters id (integer) The identifier of the folder.
include (string) Allowed properties to be included:
¢ See GET folders

Example Request

GET https://cdr-chic.ics.forth.gr/api/folders/3 HTTP/1.1

Example Response

{

"id": 3,
"name": "Testl",
"level": 2,
"parentFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/2"
},

"childFolders": {
"totalCount": 1,
"pagination": {

"rpp": 25,
"page": O
},
"items": [
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/4"
}

1,

"nextPageUrl": null
},
"containedObjects": {

"totalCount": 1,

"pagination": {

"rpp": 25,

Page 39 of 121

S\,D[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

"page": 0
},
"items": [
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}
1,
"nextPageUrl": null
},
"containedObjectRelations": ({
"totalCount": 1,
"pagination": {
"rpp": 25,
"page": 0
},
"items": [
{
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/3/objects/1"
}
1,
"nextPageUrl": null
},
"folderGroupRights": null,
"folderUserRights": null,

"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/3"
}
PUT folders/{id} n
Description Updates or moves the folder with the specified identifier.
Parameters id (integer) The identifier of the folder.
Content-Type application/json
Notes Properties annotated with the “Settable” attribute can be updated.
* Name
* ParentFolder

Example Request

{
"id": 3,
"name": "Test2",
"parentFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/2"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/3"
}

Page 40 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Example Response

{
"id": 3,
"name": "Test2",
"level": 2,
"parentFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/2"
},
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/3"
}
POST folders ﬂ
Description Creates a new folder.
Content-Type application/json

Example Request

{
"name": "Test3",
"parentFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/2"
}
}

Example Response

{

"id": 6,

"name": "Test3",

"level": 2,

"parentFolder": {

"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/2"

},

"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/6"
}
DELETE folders/{id} fal
Description Deletes the folder with the specified identifier.
Parameters id (integer) The identifier of the folder.

Page 41 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Example Request

DELETE https://cdr-chic.ics.forth.gr/api/folders/6 HTTP/1.1

Example Response

HTTP/1.1 204 No Content

o folder-ob!ects/{!d} - . ﬂ
folder-objects/{id}?include={include}

Description Gets the relation between a folder and an object.

Parameters id (integer) The identifier of the relation.

include (string) Allowed properties to be included:
* RelatedFolder

* RelatedObject

Example Request

GET https://cdr-chic.ics.forth.gr/api/folder-objects/1 HTTP/1.1

Example Response

{
"id": 1,
"relatedFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/1"
},
"relatedObject": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/1"
}
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folder-objects/1"
}
POST folder-objects ﬂ
Description Creates a relation between a folder and an object.
Content-Type application/json

Example Request

{
"relatedFolder": {

Page 42 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/1"
},
"relatedObject": {

"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
}

Example Response

{
"id": 2,
"relatedFolder": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folders/1"
},
"relatedObject": {
"selfUrl": "https://cdr-chic.ics.forth.gr/api/objects/2"
}
"selfUrl": "https://cdr-chic.ics.forth.gr/api/folder-objects/2"
}
DELETE folder-objects/{id} ﬂ
Description Deletes the relation between a folder and an object.
Parameters id (integer) The identifier of the relation.

Example Request

DELETE https://cdr-chic.ics.forth.gr/api/folder-objects/1 HTTP/1.1

Example Response

HTTP/1.1 204 No Content

4.5.8 Download

The system provides download functionality for available datasets for further processing. A single
object or multiple objects can be downloaded simultaneously. Even a whole folder structure can be
downloaded in a compressed container file, preserving the folder structure. To save bandwidth and
time the files represented by the objects or folders are compressed on the fly for the download.

GET objects/{id}/download n
Description Downloads the object with the specified identifier.
Parameters id (integer) The identifier of the object.

Page 43 of 121

yﬂthV

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Example Request

GET https://cdr-chic.ics.forth.gr/api/objects/1 HTTP/1.1

Example Response

HTTP/1.1 200 OK

Content-Type: application/zip

Content-Length: 209327

Content-Disposition: attachment; filename=cdr object 1 20150913 010452.zip

GET folders/{id}/download ﬂ
Description Downloads the folder with the specified identifier.
Parameters id (integer) The identifier of the folder.

Example Request

GET https://cdr-chic.ics.forth.gr/api/folders/1 HTTP/1.1

Example Response

HTTP/1.1 200 OK

Content-Type: application/zip

Content-Length: 209327

Content-Disposition: attachment; filename=cdr folder 1 20150913 010452.zip

4.6 Summary

The clinical data repository makes use of the REST (Representational State Transfer) architectural
principle to exchange data between applications in a loosely coupled way. Consumers of the REST
API only need to know the resource address and how to make a request to that resource. How the
resource actually gets its data is completely hidden from the consumer. This allows other services of
the CHIC environment to programmatically access all the relevant medical data including imaging
data, clinical data, histological data and genetic data.

Additional data exchange between the clinicians and researchers through the Trusted Third Party
could be successfully conducted. At this point the clinical data repository stores nephroblastoma and
lung data but is fully prepared for brain and other data.

In this deliverable we have presented the fully implemented APl based on the general concepts
introduced in the first deliverable. The functionalities offered by the APl match the ones offered by
the web interface. Additionally, a first version of the external timeline tool developed by BED has
been integrated into the data repository interface. The timeline tool itself leverages the

Page 44 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

functionalities provided by the data repository REST API. All objects can be displayed within the
graphical environment and the datasets can be directly downloaded from the timeline interface.

All components of the clinical data repository have been successfully deployed to the private cloud
infrastructure provided by FORTH. The APl documentation can be accessed by the following URL
https://cdr-chic.ics.forth.gr/api/help

Page 45 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

5 Implementation of the interfaces of model/tool and in silico trial
repositories

5.1 Model/tool repository schema

The main entities of the model/tool repository are the tool, the parameter, and the property. The
tool entity includes all the descriptive information of a tool, the parameter entity contains all the
information regarding the input and output parameters of a tool and the property entity contains the
properties that could characterize a tool. The actual value of a property for a specific tool is stored in
the tool_property entity.

The entity relational diagram of the model/tool repository, which has been retrieved from
deliverable “D8.1 — Design of the CHIC repositories”, is depicted, in the sake of completeness in
figure 5:

As shown in the following figure, the entity relational diagram of model/tool repository remains the
same as in deliverable D8.1, apart from the following modifications:

* Entity mr_parameter has been modified in order to be able to arrange the parameters of the
models into 2 groups. Each parameter which belongs to the first group named “static” should
get input before the execution of the model, or should provide output after the execution of
the model. Each parameter which belongs to the second group named “dynamic” should get
input or provide output during the execution of the model.

* Entity mr_tool has been modified in order to be able to store the url representing semantic
information about the model.

¢ Column “version” has been moved from entity mr_file to entity mr_tool. This change was
essential in order for the system to be able to associate an experiment stored in in silico trial
repository with the specific model version which has been used for that experiment.

Page 46 of 121

S\,D[ojdp

4
C H I C Grant Agreement no. 600841

mm—— D8.3 - Implementation of the interfaces of the CHIC repositories

L id INT(11) | mr_tool_property
 tool_id INT(11) L id INT(11)
» name VARCHAR(100) tool_id INT(11)
< property_id INT(11)
> value VARCHAR(100)

 created_on DATETIME

 description TEXT

> data_type VARCHAR(100)

> unit VARCHAR(100)

> data_range VARCHAR(100)

> default_value VARCHAR(100)

S

|

 created_by INT(11) |
> modified_on DATETIME :
> modified_by INT(11) :
|

|

|

|

~is_mandatory TINYINT(1) B—— — —
»is_output TINYINT(1) : >
> is_static TINYINT(1) :
e Omes o :
Sevin e A
> created_on DATETIME | title VARCHAR(100) |
| o | ¢ id INT{(11)
o created_by INT(11) | . description TEXT |
| HO-——————— » name VARCHAR(100)
» modified_on DATETIME | > comment TEXT
) > description TEXT
» modified_by INT{11) | > version VARCHAR(10)
| — comment TEXT
| 2 o semtype TEXT ’
» semtype TEXT
> created_on DATETIME
—_ | 3
o created_by INT(11)

 modified_on DATETIME
 modified_by INT{11)

»is_part_of VARCHAR({200)
2 source TEXT

 doi VARCHAR(100)

» pmid VARCHAR(45)
 created_on DATETIME

o created_by INT(11)

. modified_on DATETIME

» modified_by INT(11)

|
|
|
|
|
|
|
o] | 7 id INT(11)
: : < tool_id INT{11)
! id INT(11) | | > description TEXT
< tool_id INT(11) : : kind VARCHAR(20)
> title TEXT : | source VARCHAR(250)
|
 type VARCHAR(100) | | 2 license TEXT
 creator TEXT : =777 shatsum VARCHAR(40)
» issued VARCHAR(100) | > comment TEXT
|
 bibliographic_citation VARCHAR(100) | > engine VARCHAR(40)
|

 created_on DATETIME
 created_by INT(11)

. modified_on DATETIME
 modified_by INT(11)

>
Y

Figure 5: Updated entity relationship (ER) diagram of model/tool repository

Page 47 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

5.2 Model/tool repository RESTful application programming interfaces

As described in chapter 5.3, model/tool repository makes use of RESTful web services which are
based on the entity relationship diagram depicted in figure 5. Model/tool repository’s RESTful web
services are mainly based on and the interfaces described in deliverable “D5.3 — Design of the
orchestration platform, related components and interfaces”. This chapter aims at presenting all the
necessary information which is essential in order for the client to access the model/tool repository’s
web services. The description of the web service, the HTTP method used, the parameters of the
service, the URL and the returned object of the service are all described in the following tables. Each
table is related to a specific RESTful web service.

Model/Tool

The following web services (tables 7 - 12) should be used whenever the client needs to store,
retrieve or delete descriptive information (title, description, comments) of the model/tool.

Table 7: Information for calling storeTool web service

storeTool a

Description This method stores the basic descriptive information of the
model/tool and returns the id

URL https://139.91.210.27/model_app/storeTool
Encoding application/x-www-form-urlencoded
HTTP Method POST
Parameters passed through title= Required - Title of the
request body model/tool
description= Not required — Description of

the model/tool

comment= Not required — Comments on
the model/tool

version= Required — version of the

model/tool (version should be

in the format X.X where X is an
integer)

semtype= Not required — url representing
semantic information about this

Page 48 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

model/tool

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code If no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Example Response

The JSON object returned by method storeTool has one key, named id, and one value which is
associated with this key.

Table 8: Information for calling getAllTools web service

getAllTools a
Description This method returns all the models/tools and the corresponding
descriptive information stored (title, description, comment,
version, semtype). It returns null when no model/tool stored in the
repository.
URL https://139.91.210.27/model_app/getAllTools
Encoding application/x-www-form-urlencoded
HTTP Method GET
Parameters No parameters required
Returns 200 OK & JSON object
400 http status code if bad request

Page 49 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTools are as many as the different
models/tools stored in the model/tool repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

the column name of mr_tool entity (see figure 5) and each value of this nested object represents the
information of the corresponding column

Table 9: Information for calling getToolByld web service

getToolByld a
Description This method returns the descriptive information stored under the
id (title, description, comment, version, semtype) and null when
not existing
URL https://139.91.210.27/model_app/getToolByld
Encoding application/x-www-form-urlencoded
HTTP Method GET
Parameter (parameter should id= Required — Id of the model/tool
be passed through the URL —
query string parameter)
Returns 200 OK & JSON object
400 http status code if bad request
401 http status code if no SAML token inside HTTP header

Page 50 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getToolByld has eleven keys named title, description,
comment, version, semtype, created_on, created_by, modified_on and modified_by, and eleven
values associated with those keys.

Table 10: Information for calling getLatestToolByToolName web service

getlatestToolByToolName n

Description This method returns the information of the latest version of a given
model/tool name

URL https://139.91.210.27/model_app/getLatestToolByToolName
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter title= Required — the title of the
should be passed through the model/tool

URL — query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Page 51 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

encoded compressed SAML
token>

Json Response

The JSON object returned by method getlLatestToolByToolName has eleven keys named title,

description, comment, version, semtype, created_on, created_by, modified_on and modified_by,
and eleven values associated with those keys.

Table 11: Information for calling getPreviousVersions web service

getPreviousVersions n

Description This method returns information of all the previous versions of a
given model/tool

URL https://139.91.210.27/model_app/getPreviousVersions
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter id= Required — the id of the given
should be passed through the model/tool
URL — query string parameter)

Returns 200 OK & JSON object *

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getPreviousVersions are as many as the different

Page 52 of 121

SVD[OJ"V

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

previous versions of a given model/tool. Each value associated with a specific key is represented by a
nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the mr_tool entity (see figure 5) and each value of the nested JSON object represents the
information of the corresponding column.

Table 12: Information for calling deleteToolByld web service

deleteToolByld

Description This method deletes the descriptive information, the files, the
parameters, and property values of a model/tool.
URL https://139.91.210.27/model_app/deleteToolByld
Encoding application/x-www-form-urlencoded

HTTP Method

DELETE

PARAMETER (parameter should
be passed through the URL —
query string parameter)

Required — Id of model/tool

Returns

200 OK if model/tool has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Parameter

The following web services (tables 13-18)

should be used whenever the client needs to store,

retrieve or delete information related to parameters (name, description, data_type, data_range,

etc.).

Page 53 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 13: Information for calling storeParameter web service

storeParameter n
Description This method stores the parameter information of a tool and
returns the id
URL https://139.91.210.27/model_app/storeParameter
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters tool_id= Required - id of the tool to which

passed through request body) the parameter belongs

name= Required — name of the
parameter
description= Not Required — description of

the parameter

data_type= Required — the type of the
parameter (number, string, file)

unit= Not Required — the units in
which the parameter is
represented (only applicable if
the parameter is a number)

data_range= Required — Data range of the
parameter

* Discrete values example:
valuel,value2,value3
* Min value example: 3-
* Max value example: -10
* Min max values
example: 3-5

default_value= Required — the value that will be
used if a parameter value is not
provided to the tool

Page 54 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

is_mandatory= Required — 1 if the parameter is
mandatory, 0 if it is optional

is_output= Required — 1 if the parameter is
output, 0 if it is input

is_static= Required — 1if the parameter is
static, 0 if it is dynamic

comment= Not Required — comments on the
parameter
semtype= Not required — url representing
semantic information about this
parameter
Returns 200 OK & JSON object *

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The JSON object returned by method storeParameter has one key, named id, and one value which is
associated with this key.

Table 14: Information for calling deleteParameter web service

deleteParameter n
Description This method deletes a certain parameter
URL https://139.91.210.27/model_app/deleteParameter

Page 55 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Encoding

application/x-www-form-urlencoded

HTTP method

Delete

PARAMETER (parameter should
be passed through the URL -
query string parameter)

id= Required — id of the parameter

Returns

200 OK if parameter has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 15: Information for calling getParametersByToolld web service

getParametersByToolld n
Description This method returns the information of all the parameters of a
given tool
URL https://139.91.210.27/model_app/getParametersByToolld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter tool_id= Required — the id of the tool to

should be passed through the
URL — query string parameter

which the parameters belong

Returns

200 OK & JSON object

Page 56 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getParametersByToolld are as many as the different
parameters belonging to the tool. Each value associated with a specific key is represented by a
nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the mr_parameter entity (see figure 5) and each value of the nested JSON object represents

the information of the corresponding column.

Table 16: Information for calling getMandatoryParametersByToolld web service

getMandatoryParametersByToolld

Description This method returns the information of the mandatory parameters of
a given tool
URL https://139.91.210.27/model_app/getMandatoryParametersByToolld
Encoding application/x-www-form-urlencoded

HTTP Method

GET

PARAMETER (parameter tool_id=
should be passed through
the URL — query string
parameter

Required - the id of the tool to
which the mandatory parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

Page 57 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getMandatoryParametersByToolld are as many as
the different mandatory parameters belonging to the tool. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the mr_parameter entity (see figure 5) and each value of the nested
JSON object represents the information of the corresponding column.

Table 17: Information for calling getinputParametersByToolld web service

getinputParametersByToolld a
Description This method returns the information of the input parameters of a
given tool
URL https://139.91.210.27/model_app/getinputParametersByToolld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter tool_id= Required — the id of the tool to
should be passed through the which the input parameters
URL — query string parameter belong
Returns 200 OK & JSON object
400 http status code if bad request
401 http status code if no SAML token inside HTTP header
403 http status code if SAML token not verified

Page 58 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getinputParametersByToolld are as many as the
different input parameters belonging to the tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

the column name of the mr_parameter entity (see figure 5) and each value of the nested JSON object
represents the information of the corresponding column.

Table 18: Information for calling getOutputParametersByToolld web service

getOutputParametersByToolld Q
Description This method returns the information of the output parameters of a
given tool
URL https://139.91.210.27/model_app/getOutputParametersByToolld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter tool_id= Required — the id of the tool to

should be passed through the

which the output parameters
URL — query string parameter

belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

Page 59 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

token>

Json Response

The keys of the JSON object returned by method getOutputParametersByToolld are as many as the
different output parameters belonging to the tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_parameter entity (see figure 5) and each value of the nested JSON object
represents the information of the corresponding column.

Property

The following web services (tables 19-25) should be used whenever the client needs to store,
retrieve or delete information related to properties (property name, property value, property
description, property comments).

Table 19: Information for calling storeProperty web service

storeProperty Q

Description This method stores the basic descriptive information of a property
and returns the id

URL https://139.91.210.27/model_app/storeProperty
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters name= Required — the name of the
passed through request body) property
description= Not required — description of

the property

comment= Not required — comments on
the property

semtype= Not required — url representing
semantic information about this
property

Returns 200 OK & JSON object

Page 60 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeProperty has one key, named id, and one value which is

associated with this key.

Table 20: Information for calling getAllProperties web service

getAllProperties ﬂ
Description This method returns all the properties and the corresponding
descriptive information stored (id, name, description, comment,
semtype)
URL https://139.91.210.27/model_app/getAllProperties

Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS No parameters required

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Page 61 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllProperties are as many as the different
properties stored in the model/tool repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

the column name of the mr_property entity (see figure 5) and each value of the nested JSON object
represents the information of the corresponding column.

Table 21: Information for calling getPropertyByld web service

getPropertyByld Q

Description This method returns the descriptive information stored under the
property id (name, description, comment)

URL https://139.91.210.27/model_app/getPropertyByld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter should id= Required — the id of the

be passed through the URL —

property
query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

Page 62 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

token>

Json Response

The JSON object returned by method getPropertyByld has four keys named name, description,
comment, semtype, and four values associated with those keys.

Table 22: Information for calling storePropertyValue web service

storePropertyValue ﬂ
Description This method stores the value of a property for a tool and returns
theid
URL https://139.91.210.27/model_app/storePropertyValue
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters tool_id= Required — the id of the tool
passed through request body)
property_id= Required — the id of the
property
value= Required — the value of the
property
Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Page 63 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Json Response

The JSON object returned by method storePropertyValue has one key, named id, and one value

which is associated with this key.

Table 23: Information for calling deletePropertyValue web service

deletePropertyValue

Description This method deletes the property value for a certain tool
URL https://139.91.210.27/model_app/deletePropertyValue
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the record

should be passed through the
URL — query string parameter)

which holds the property value

Returns 200 OK if property value has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Page 64 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 24: Information for calling getPropertyValuesByToolld web service

getPropertyValuesByToolld n
Description This method retrieves all the property — value pairs for a given tool
URL https://139.91.210.27/model_app/getPropertyValuesByToolld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter tool_id= Required — the id of the tool

should be passed through the

with which the property — value
URL — query string parameter)

pairs are associated

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getPropertyValuesByToolld are as many as the
different properties that describe or/and classify the given tool. Each value associated with a specific

key is represented by a nested JSON object. The keys of the aforementioned nested JSON object are
named name, description, comment, value, semtype.

Table 25: Information for calling deletePropertyByld web service

deletePropertyByld a

Description This method deletes the property of the given id and the

Page 65 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

corresponding values

URL https://139.91.210.27/model_app/deletePropertyByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the record
should be passed through the which holds property’s
URL — query string parameter) descriptive information
Returns 200 OK if property has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>
Reference

The following web services (tables 26-29) should be used whenever the client needs to store,
retrieve or delete information related to references (reference title, reference authors, reference

type, etc.).

Table 26: Information for calling storeReference web service

storeReference n

Description This method stores information of the reference. The reference
should be associated with a model/tool.

URL https://139.91.210.27/model_app/storeReference

Encoding application/x-www-form-urlencoded

Page 66 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

e D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Method POST

PARAMETERS (parameters tool_id= Required — the id of the tool
passed through request body) with which the reference is
associated

title= Required — the title of the
reference

type= Required — the type of the
reference (book, journal article,
etc.)

creator= Required — the creator(s) of the
resource

issued= Required - the date of formal
issuance

bibliographic_citation= Not required — the bibliographic
citation of the resource

is_part_of= Not required — the related
resource that this resource is
part of

source= Not required — the related
resource from which the
described resource is derived
from

doi= Not required — digital object
identifier of the resource

pmid= Not required — the pubmed
identifier

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Page 67 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The JSON object returned by method storeReference has one key, named id, and one value which is
associated with this key.

Table 27: Information for calling deleteReferenceByld web service

deleteReferenceByld Q
Description This method deletes a specific reference
URL https://139.91.210.27/model_app/deleteReferenceByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the

should be passed through the reference
URL — query string parameter)

Returns 200 OK if reference has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Page 68 of 121

gvD[O]dp

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 28: Information for calling getReferencesByToolld web service

getReferencesByToolld

Description This method returns all the references of a given tool
URL https://139.91.210.27/model_app/getReferencesByToolld
Encoding application/x-www-form-urlencoded

HTTP Method

GET

PARAMETER (parameter
should be passed through the
URL — query string parameter)

tool_id=

Required — the id of the tool
with which the references are
associated

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getReferencesByToolld are as many as the different
references which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

the column name of the mr_reference entity (see figure 5) and each value of the nested JSON object
represents the information of the corresponding column.

Page 69 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 29: Information for calling getAxes web service

getAxes n

Description This method returns all the references based on the arguments. It
makes use of the is_part_of attribute and given the option and the
level (if the option is different than that of sibling) returns the
desired references along with their information.
URL https://139.91.210.27/model_app/getAxes
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS (parameter id= Required — the id of the

should be passed through the
URL — query string parameter)

reference

option= Required — it takes one of the
following string values:
¢ Ancestors
¢ Descendants
* Siblings
level= Not required — this parameter is

integer and it is required if the
option is different than that of
Siblings

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Name: Authorization

Page 70 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Json Response

The keys of the JSON object returned by method getAxes are as many as the different references
which are siblings, ancestors or descendants with the given reference. Each value is associated with a
specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the mr_reference entity (see figure 5) and each value of the
nested JSON object represents the information of the corresponding column.

File

The following web services (tables 30-33) should be used whenever the client needs to store,
retrieve or delete information related to files (title of file, description of file, the file itself, etc.).

Table 30: Information for calling storeFile web service

storeFile Q

Description This method stores the file information and returns the id
URL https://139.91.210.27/model_app/storeFile
Encoding Multipart/form-data

HTTP Method

POST

PARAMETERS (parameters
passed through request body)

tool_id= Required — the id of the tool
with which the file is associated

title= Required — the title of the file
description= Not required — description of
the file
kind= Not required — defines what this

file is (document, source code,
binary, etc.)

license= Not required — the license
associated with this file

Shalsum= Not required — the shal
checksum of the file

Page 71 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Computational Horizons i

comment= Not required — comments on
the file
engine= Not required — the engine that
is suitable for executing this file
file=

Required — the actual file (blob)

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

associated with this key.

The JSON object returned by method storeFile has one key, named id, and one value which is

Table 31: Information for calling deleteFile web service

deleteFile

Description This method deletes a certain file
URL https://139.91.210.27/model_app/deleteFile
Encoding application/x-www-form-urlencoded

HTTP Method

DELETE

PARAMETER (parameter should
be passed through the URL -

Required — the id of the file

Page 72 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

query string parameter)

Returns

200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Value: SAML auth=<Base 64
encoded compressed SAML

Name: Authorization

token>
Table 32: Information for calling getFileByld web service

getFileByld a

Description This method returns the given file (attachment)

URL https://139.91.210.27/model_app/getFileByld

Encoding application/x-www-form-urlencoded
HTTP Method GET

PARAMETER (parameter should id= Required — the id of the file

be passed through the URL —
query string parameter)

Returns

(Content-Type:
application/force-download

Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Page 73 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Table 33: Information for calling getFilesOfKind web service

getFilesOfKind n

Description This method returns the information of all the files of a specific
kind of a given tool

URL https://139.91.210.27/model_app/getFilesOfKind
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS (parameters tool_id= Required — the id of the tool

should be passed through the
URL — query string parameter)

kind= Required - kind of file
(document, source code, binary,
etc.)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getFilesOfKind are as many as the different files of a
specific kind which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

Page 74 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

the column name of the mr_file entity (see figure 5) and each value of the nested JSON object
represents the information of the corresponding column.

5.3 Insilico trial repository schema

The three main entities of the in-silico trial repository are the trial, the experiment, and the subject.
The trials are the digital equivalent of a clinical one, with models in place of the hypotheses and
scientific methods, and placebo models in place of a placebo drug. For cancer cases a free growth
model could be used as a placebo model.

A trial consists of multiple experiments. The experiments are performed with the same model each
time, which is defined in the referred trial. Each experiment scheduled or ran in the CHIC framework
is stored in this repository in the form of triples. A triple consists of the status of the subject of the
experiment before the experiment execution, the model that is stored in the trial table and the
status of the subject after the experiment.

Each experiment is performed on a subject that is on a given state and creates a new subject with the
new state. The external ids and URLs are referring to external repositories that could be used such as
the CHIC clinical data system, a clinical trial management system (ObTiMA, OpenClinica), etc.

The entity relational diagram of in silico trial repository, which has been retrieved from deliverable
“D8.1 - Design of the CHIC repositories” is depicted, in the sake of completeness, in figure 5.

As shown in figure 5, entity tr_miscellaneous_parameter has been added to in silico trial repository.
This entity aims at storing the values of miscellaneous parameters of the hypermodel that has been
used in the experiment. Miscellaneous parameters are parameters which are independent of the
patient, but the execution of the (hyper)model is affected by them. Such parameters are the time of
simulation, the dimension of geometric cells, the margin percent, etc.

Since miscellaneous parameters cannot be correlated with subjects or patients, it became necessary
to link directly the value of those parameters with the specific experiment in which those
miscellaneous parameters have been used. More specifically tr_miscellaneous_parameter entity
consists of the following columns: (attributes):

* id: Primary key. Used to uniquely identify each table row.

¢ experiment_id: The id of the experiment to which this parameter has been used. Linked to
the table tr_experiment.

* hypomodel_parameter_id: The id of hypomodel’s parameter stored in model/tool repository
with which this miscellaneous parameter is associated. Linked to the table mr_parameter of
model/tool repository.

* hypermodel_parameter_id: The id of hypermodel’s parameter stored in model/tool
repository with which this miscellaneous parameter is associated. Linked to the table
mr_parameter of model/tool repository.

* value: The value that has been assigned to this miscellaneous parameter during the
experiment.

¢ created_on: The date and time that this record has been created.

* created_by: The id of the creator of this record.

* modified_on: The date and time that this record has been modified.

* modified_by: The id of the modifier of this record.

Page 75 of 121

S\,D[ojdp

C H I C Grant Agreement no. 600841

rm— D8.3 - Implementation of the interfaces of the CHIC repositories

Qe mo

7 id INT(11) /id INT(11)
 description TEXT

» model_id VARCHAR{45)

> model_url VARCHAR(100)
> placebo_model_id VARCHAR(45) |
> placebo_model_ud VARCHAR(100) | !

o title TEXT

L id INT(11) > type VARCHAR(100)
> creator TEXT

 reference_id INT(11) b -OH issued VARCHAR(100)
————— bibliographic_itation VARCHAR(100)
> comment TEXT »is_part_of VARCHAR(200)

> created_on DATETIME

= source TEXT
O creatad by INT(11) > doi VARCHAR(100)
> modified_on DATETIME o prkd VARCHARIS)
> modified_by INT(11) : > created_on DATETIME
> : > created_by INT(11)
3 | modified_on DATETIME
| : > modified_by INT(11)
| +id INT(11)
- | >
P | e
| T ———— o Oewenment AINTA -
' |
I >
I g
| Qume v
7 id INT(11) |
ial_id INT(11) : 7 id INT(11)
 trial_i
________ © subject_id INT(11)
 description TEXT
< subject_id_in INT(11)
i > description TEXT
Osubject i outINT() by | 1id INT(11)
ot kind VARCHAR(20)
 placebo TINYINT(1) | ~ description TEXT
" i source VARCHAR(250)
> status VARCHAR(45) | __ O subject_extemal_id VARCHAR(45)
> version VARCHAR(10)
 comment TEXT S | extemal_url VARCHAR(100)
_____ = license TEXT
> created_on DATETIME | O comment TEXT HO-————— 4 —ig
 shatsum VARCHAR{40)
 created_by INT(11) : J created_on DATETIME
> comment TEXT
> modified_on DATETIME [# ——————— | b Ok © created_by INT(11)
> engine VARCHAR(40)
> modified_by INT(11) | > modified_on DATETIME
> I > modified_by INT(11) > created_on DATETIME
| |
L | > O created_by INT(11)
|

 modified_on DATETIME

i modified_by INT(11)
>

id INT(11) L

& experiment_id INT(11)

* hypomodel_parameter_id VARCHAR(45)
 hypermodel_parameter_id VARCHAR(45)
> value VARCHAR(100)

 created_on DATETIME

 created_by DATETIME

» modified_on DATETIME

 modified_by DATETIME

d >
.

Figure 6: Updated entity relationship (ER) diagram of in silico trial repository

Page 76 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

5.4 Insilico trial repository RESTful application programming interfaces

As described in chapter in silico trial repository makes use of RESTful web services which are based
on the entity relationship diagram depicted in figure 6. In silico trial’s repository RESTful web services
are based on the interfaces described in deliverable “D10.2 — Design of the orchestration platform,
related components and interfaces”. This chapter aims at presenting all the necessary information
which is essential in order for the client to access the in silico trial repository’s web services. The
description of the web service, the HTTP method used, the parameters of the service, the URL and
the returned object of the service are all described in the following tables. Each table is related to a
specific RESTful web service.

Trial

The following web services (tables 34-38) should be used whenever the client needs to store,
retrieve or delete information related to trials (description of trial, model used in the trial,
comments on the trial, etc.).

Table 34: Information for calling storeTrial web service

storeTrial a

Description This method stores the basic descriptive information of the trial,
the model, the placebo model, etc. It returns the id of the trial

URL https://139.91.210.27/trial_app/storeTrial
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters description= Required — the description of
passed through request body) the trial
model_id= Required — the id of the in silico

model that is used in the trial

model_url= Required — the url where the in
silico model is located

placebo_model_id= Not required — the id of the in
silico model that is used as a

placebo
placebo_model_url= Not required — the url where

the placebo in silico model is

Page 77 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

located

comment= Not required — comments on
the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrial has one key, named id, and one value which is
associated with this key.

Table 35: Information for calling getAllTrials web service

getAllTrials n
Description This method returns the corresponding descriptive information of
all the trials stored in in silico trial repository (trial ids, description
of the trial, comments, etc.).
URL https://139.91.210.27/trial_app/getAllTrials

Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS No parameters required

Returns 200 OK & JSON object

Page 78 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrials are as many as the different trials stored
in the in silico trial repository. Each value associated with a specific key is represented by a nested
JSON object. Each key of the aforementioned nested JSON object represents the column name of the
tr_trial entity (see figure 6) and each value of the nested JSON object represents the information of

the corresponding column.

Table 36: Information for calling getTrialByld web service

getTrialByld n
Description This method returns the descriptive information (description of the
trial, comments, etc.), of the given trial.
URL https://139.91.210.27/trial_app/getTrialByld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter should id= Required — the id of the trial

be passed through the URL -
query string parameter)

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

Page 79 of 121

gvD[O]dp

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getTrialByld has eleven keys named id, description, model_id,
model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by, modified_on

and modified_by, and eleven values associated with those keys.

Table 37: Information for calling getTrialByModelld web service

getTrialByModelld

Description This method returns the information related to the trial in which
the given model is used (trial id, description of the trial, comments,
etc.). The argument is the id of the tool used in the model
repository
URL https://139.91.210.27/trial_app/getTrialByModelld
Encoding application/x-www-form-urlencoded

HTTP Method

PARAMETER (parameter should
be passed through the URL —
query string parameter)

Required — the id of the model
which is used in the trial

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Page 80 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The JSON object returned by method getTrialByModelld has eleven keys named id, description,
model_id, model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by,
modified_on and modified_by, and eleven values associated with those keys.

Table 38: Information for calling deleteTrialByld web service

deleteTrialByld n

Description This method deletes the trial, the experiments included in the trial
and the reference links

URL https://139.91.210.27/trial_app/deleteTrialByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter should id=

= Required — the id of the trial
be passed through the URL -

query string parameter)

Returns 200 OK if trial has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Page 81 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Experiment

The following web services (tables 39-45) should be used whenever the client needs to store,
retrieve or delete information related to experiments (description of experiment, link to the trial
to which this experiment belongs, comments on the experiment, etc.).

Table 39: Information for calling storeExperiment web service

storeExperiment ﬂ
Description This method stores the necessary and descriptive information of an
experiment. It returns the id of the stored experiment
URL https://139.91.210.27/trial_app/storeExperiment
Encoding application/x-www-form-urlencoded

HTTP Method

POST

PARAMETERS (parameters
passed through request body)

trial_id= Required — the id of the trial
with which the new experiment
is associated

description= Required — the description of
the new experiment

subject_id_in= Required — the id of the subject
that is used as an input to the
new in silico experiment

subject_id_out= Required — the id of the subject
that is produced after the
execution of the new in silico
experiment

placebo= Required — true if in the in silico
experiment the placebo model
must be used, otherwise false

status= Not required — the status of the
in silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Page 82 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The JSON object returned by method storeExperiment has one key, named id, and one value which is
associated with this key.

Table 40: Information for calling getAllExperimentsByTrialld web service

getAllExperimentsByTrialld n

Description This method returns information of all the experiments which
belong to a given trial

URL https://139.91.210.27/trial_app/getAllExperimentsByTrialld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter trial_id= Required — the id of the trial

should be passed through the
URL — query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

Page 83 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllExperimentsByTrialld are as many as the
different experiments which belong to the given trial. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents

the column name of the tr_experiment entity (see figure 6) and each value of the nested JSON object
represents the information of the corresponding column.

Table 41: Information for calling getExperimentByld web service

getExperimentByld n
Description This method returns the experiment and the related information
stored under the id (description, subject_id_in, subject_id_out,
placebo, status, comment, etc.)
URL https://139.91.210.27/trial_app/getExperimentByld
Encoding application/x-www-form-urlencoded

HTTP Method

GET

PARAMETER (parameter should
be passed through the URL —
query string parameter)

id= Required — the id of the
experiment

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Page 84 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentByld has twelve keys named id, trial_id,
description, subject_id_in, subject_id_out, placebo, status, comment, created_on, created_by,
modified_on and modified_by, and twelve values associated with those keys.

Table 42: Information for calling getExperimentStatusByld web service

getExperimentStatusByld Q
Description This method returns the status of the experiment
URL https://139.91.210.27/trial_app/getExperimentStatusByld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter id= Required — the id of the

should be passed through the
URL — query string parameter)

experiment

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Page 85 of 121

gvD[O]dp

CHIC

Computational Horizons in Cancer

Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Json Response

value associated with this key.

The JSON object returned by method getExperimentStatusByld has one key named status, and one

Table 43: Information for calling getExperimentsByStatus web service

getExperimentsByStatus

Description This method returns all the experiments that are on a given status
URL https://139.91.210.27/trial_app/getExperimentsByStatus
Encoding application/x-www-form-urlencoded

HTTP Method

GET

PARAMETER (parameter
should be passed through the
URL — query string parameter)

status=

Required — the status of the in
silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getExperimentsByStatus are as many as the
different experiments that are on a given status. Each value associated with a specific key is

Page 86 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_experiment entity (see figure 6) and each value of the nested JSON object
represents the information of the column.

Table 44: Information for calling updateExperimentStatus web service

updateExperimentStatus a
Description This method updates the status of a given experiment
URL https://139.91.210.27/trial_app/updateExperimentStatus
Encoding application/x-www-form-urlencoded
HTTP Method PUT
PARAMETERS (parameters id= Required — the id of the
passed through request body) experiment
status= Required - the status of the in

silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns 200 OK if the status of the experiment has been updated

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Page 87 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 45: Information for calling deleteExperimentByld web service

deleteExperimentByld n
Description This method deletes the experiment and the corresponding
experiment references (links)
URL https://139.91.210.27/trial_app/deleteExperimentByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the

should be passed through the
URL — query string parameter)

experiment

Returns

200 OK if experiment has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Miscellaneous parameter

The following web services (tables 46-50) should be used whenever the client needs to store,
retrieve or delete information related to miscellaneous parameters (value assigned to
miscellaneous parameter, link to the experiment with which the miscellaneous parameter is

associated, etc.).

Page 88 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 46: Information for calling storeMiscellaneousParameter web service

storeMiscellaneousParameter n

Description This method stores information related to a miscellaneous
parameter. It returns the id of the created record.

URL https://139.91.210.27/trial_app/storeMiscellaneousParameter
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters experiment_id= Required — the id of the
passed through request body) experiment with which the
miscellaneous parameter is
associated
hypomodel_parameter_id= Required — the id of

hypomodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

hypermodel_parameter_id= Not required — the id of
hypermodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

value= Required — the value that has
been assigned to miscellaneous
parameter for a given
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Page 89 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeMiscellaneousParameter has one key, named id, and one
value which is associated with this key.

Table 47: Information for calling getAllMiscellaneousParameters web service

getAllMiscellaneousParameters n
Description This method returns information of all miscellaneous parameters
URL https://139.91.210.27/trial_app/getAllMiscellaneousParameters
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS No parameters required
Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParameters are as many as the

Page 90 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

different miscellaneous parameters that are stored in the in silico trial repository. Each value
associated with a specific key is represented by a nested JSON object. Each key of the
aforementioned nested JSON object represents the column name of the
tr_miscellaneous_parameter entity (see figure 6) and each value of the nested JSON object
represents the information of the corresponding column.

Table 48: Information for calling getAllMiscellaneousParametersByExperimentld web service

getAllMiscellaneousParametersByExperimentld a

Description This method returns information of all miscellaneous parameters which are
associated with a given experiment

URL https://139.91.210.27/trial_app/getAllMiscellaneousParametersByExperimentld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER experiment_id= Required — the id of the experiment

(parameter should
be passed through
the URL — query
string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64 encoded
compressed SAML token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParametersByExperimentld are
as many as the different miscellaneous parameters which are associated with the given experiment.
Each value associated with a specific key is represented by a nested JSON object. Each key of the

Page 91 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

aforementioned nested JSON object represents

the

column name of the

tr_miscellaneous_parameter entity (see figure 6) and each value of the nested JSON object

represents the information of the corresponding column.

Table 49: Information for calling getMiscellaneousParameterByld web service

getMiscellaneousParameterByld

Description This method returns information of the miscellaneous parameter

stored under the id (experiment_id, hypomodel_parameter_id,
hypermodel_parameter_id, value, etc)

URL https://139.91.210.27/trial_app/getMiscellaneousParameterByld

Encoding application/x-www-form-urlencoded

HTTP Method GET
PARAMETER (parameter id= Required — the id of the
should be passed through the miscellaneous parameter
URL — query string parameter)
Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getMiscellaneousParameterByld has eight keys named
experiment_id, hypomodel_parameter_id, hypermodel_parameter_id, value, created_on,
created_by, modified_on and modified_by, and eight values associated with those keys.

Page 92 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 50: Information for calling deleteMiscellaneousParameterByld web service

deleteMiscellaneousParameterByld n
Description This method deletes the miscellaneous parameter
URL https://139.91.210.27/trial_app/deleteMiscellaneousParameterByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the
should be passed through the miscellaneous parameter
URL — query string
parameter)
Returns 200 OK if miscellaneous parameter has been deleted
400 http status code if bad request
401 http status code if no SAML token inside HTTP header
403 http status code if SAML token not verified
500 http status code if internal server error
HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>
Subject

The following web services (tables 51-54) should be used whenever the client needs to store,
retrieve or delete information related to the subject (description of the subject, comments on the
subject, etc.).

Table 51: Information for calling storeSubject web service

storeSubject n

Description This method stores information related to a subject. The method

Page 93 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

returns the id of the created subject

URL https://139.91.210.27/trial_app/storeSubject
Encoding application/x-www-form-urlencoded
HTTP Method POST
PARAMETERS (parameters description= Required — the description of
passed through request body) the state of the subject
subject_external_id= Not required — the external id
of the subject
external_url= Not required — the url of the
external repository

comment= Not required — comments on

the subject

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeSubject has one key named id and one value associated

with this key.

Page 94 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 52: Information for calling deleteSubjectByld web service

deleteSubjectByld n

Description This method deletes a subject (and the linked files) stored under
the provided subject_id

URL https://139.91.210.27/trial_app/deleteSubjectByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter should id= Required — the id of the subject

be passed through the URL —
query string parameter)

Returns 200 OK if subject has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 53: Information for calling getAllSubjects web service

getAllSubjects n
Description This method returns all the subjects
URL https://139.91.210.27/trial_app/getAllSubjects
Encoding application/x-www-form-urlencoded
HTTP Method GET

Page 95 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllSubjects are as many as the different subjects
that are stored in the in silico trial repository. Each value associated with a specific key is represented
by a nested JSON object. Each key of the aforementioned nested JSON object represents the column

name of the tr_subject entity (see figure 6) and each value of the nested JSON object represents the
information of the corresponding column.

Table 54: Information for calling getSubjectByld web service

getSubjectByld n

Description This method returns the subject and the related information stored
under the id (description, subject_external_id, external_url,
comments, etc.)

URL https://139.91.210.27/trial_app/getSubjectByld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter should id= Required — the id of the subject

be passed through the URL -
query string parameter)

Page 96 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Computational Horizons in Cancer

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getSubjectByld has nine keys named id, description,
subject_external_id, external_url, comment, created_on, created_by, modified_on and modified_by,
and nine values associated with those keys.

Reference

The following web services (tables 55-62) should be used whenever the client needs to store,
retrieve or delete information related to experiment’s/trial’s references (title of reference,
reference authors, link to the experiment/trial with which this reference is associated, etc.).

Table 55: Information for calling storeTrReference web service

storeTrReference

Description This method stores the information of a reference and returns the
id
URL https://139.91.210.27/trial_app/storeTrReference
Encoding application/x-www-form-urlencoded

HTTP Method

POST

PARAMETERS (parameters
passed through request body)

title=

Required — the title of the
reference

Page 97 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

type= Not required — the type of the
reference (book, journal article,
etc.)
creator= Not required — the creator(s) of
the resource
issued= Not required — the date of

formal issuance

bibliographic_citation=

Not required — bibliographic
citation of the resource

is_part_of=

Not required — the related
resource that this resource is
part of

source=

Not required — the related
resource from which the
described resource is derived
from

doi=

Not required — digital object
identifier of the resource

pmid=

Not required — pubmed
identifier

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrReference has one key named id, and one value

Page 98 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

associated with this key.

Table 56: Information for calling getAllTrReferences web service

getAllTrReferences n
Description This method returns all the references and the related information
URL https://139.91.210.27/trial_app/getAllTrReferences
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS No parameters required
Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrReferences are as many as the different
references that are stored in the in silico trial repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_reference entity (see figure 6) and each value of the nested JSON object
represents the corresponding information of the column.

Page 99 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 57: Information for calling getTrReferencesByTrialld web service

getTrReferencesByTrialld n

Description This method returns the related information of all references which
are associated with the given trial.

URL https://139.91.210.27/trial_app/getTrReferencesByTrialld
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter trial_id= Required — the id of the trial

should be passed through the
URL — query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrReferencesByTrialld are as many as the
different references that are associated with the given trial. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the tr_reference entity (see figure 6) and each value of the nested
JSON object represents the information of the corresponding column.

Page 100 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 58: Information for calling getTrReferencesByExperimentld web service

getTrReferencesByExperimentld n

Description This method returns the related information of all the references
which are associated with the given experiment.

URL https://139.91.210.27/trial_app/getTrReferencesByExperimentid
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter experiment_id= Required — the id of the
should be passed through the experiment

URL — query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrReferencesByExperimentld are as many as the
different references that are associated with the given experiment. Each value associated with a
specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_reference entity (see figure 6) and each value of the
nested JSON object represents the information of the corresponding column.

Page 101 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Table 59: Information for calling deleteTrReferenceByld web service

deleteTrReferenceByld n

Description This method deletes a reference and the corresponding links to
trials or experiments

URL https://139.91.210.27/trial_app/deleteTrReferenceByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter id= Required — the id of the
should be passed through the reference

URL — query string parameter)

Returns 200 OK if reference (along with the links) has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 60: Information for calling storeLinkToReference web service

storeLinkToReference n

Description This method creates a link from a trial or an experiment to a
reference. Returns the id of the link

URL https://139.91.210.27/trial_app/storeLinkToReference

Encoding application/x-www-form-urlencoded

Page 102 of 121

yﬂ!”qp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Method

POST
PARAMETERS (parameters reference_id= Required — the id of the
passed through request body) reference

option= Required — the type link

(trial/experiment)
id= Required — the id of the

experiment/trial
Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

created link), and one value associated with this key.

The JSON object returned by method storeLinkToReference has one key named id (the id of the

Table 61: Information for calling deleteReferencelLinkByld web service

deleteReferencelinkByld

Description This method deletes the reference link (trial or experiment link)

depending of the provided argument

URL https://139.91.210.27/trial_app/deleteReferenceLinkByld
Encoding application/x-www-form-urlencoded
HTTP Method DELETE

Page 103 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

PARAMETERS (parameters
should be passed through the
URL — query string parameter)

id= Required — the id of the link

option= Required — type of the link
(trial/experiment)

Returns

200 OK if reference link has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 62: Information for calling getTrAxes web service

getTrAxes n
Description This method returns all the references based on the arguments. It
makes use of the is_part_of attribute and given the option and the
level (if the option is different than that of sibling) returns the
desired references with all the reference information
URL https://139.91.210.27/trial_app/getTrAxes
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS (parameters id= Required — the id of the
should be passed through the reference
URL — query string parameter)
option= Required — it takes one of the

following string values:

* Ancestors
* Descendants
* Siblings

Page 104 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Computational Horizons in Cancer

level=

Not required — this parameter is
integer and it is required if the
option is different than that of

Siblings

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization

Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrAxes are as many as the different references
which are siblings, ancestors or descendants with the given reference. Each value associated with a
specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_reference entity (see figure 6) and each value of the
nested JSON object represents the information of the corresponding column.

File

The following web services (tables 63-68) should be used whenever the client needs to store,
retrieve or delete information related to files containing experiment data (title of file, description

of file, file version, etc.).

Table 63: Information for calling storeTrFile web service

storeTrFile

Description This method stores the file information and returns the id
URL https://139.91.210.27/model_app/storeTrFile
Encoding Multipart/form-data

Page 105 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Method

POST

PARAMETERS (parameters
passed through request body)

subject_id= Required — the id of the subject
with which the file is associated

title= Required — the title of the file
description= Not required — description of
the file
kind= Not required — defines what this
file is (document, spreadsheet,
csv, etc.)
version= Required — the version of the

file (should be in the format X.X

for example 1.2)

Shalsum= Not required — the shal
checksum of the file

comment= Not required — comments on
the file
file= Required — the actual file (blob)

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrFile has one key, named id, and one value which is

Page 106 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

associated with this key.

Table 64: Information for calling deleteTrFile web service

deleteTrFile ﬂ
Description This method deletes a certain file
URL https://139.91.210.27/trial_app/deleteTrFile
Encoding application/x-www-form-urlencoded
HTTP Method DELETE
PARAMETER (parameter should id= Required — the id of the file
be passed through the URL -
query string parameter)
Returns 200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 65: Information for calling getTrFileByld web service

getTrFileByld n
Description This method returns the file (which is associated with a subject)
URL https://139.91.210.27/model_app/getTrFileByld

Page 107 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons i

D8.3 - Implementation of the interfaces of the CHIC repositories

Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter should id= Required — the id of the file

be passed through the URL —
query string parameter)

Returns

(Content-Type:
application/force-download

Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 66: Information for calling getTrLatestFilesBySubjectld web service

getTrLatestFilesBySubjectld n
Description This method returns information of all the latest version files of a
given subject
URL https://139.91.210.27/trial_app/getTrLatestFilesBySubjectld
Encoding application/x-www-form-urlencoded

HTTP Method

GET

PARAMETERS (parameters
should be passed through the
URL — query string parameter)

subject_id= Required — the id of the subject

Returns

200 OK & JSON object

400 http status code if bad request

Page 108 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

Computational Horizons in Cancer

D8.3 - Implementation of the interfaces of the CHIC repositories

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header

Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrLatestFilesBySubjectld are as many as the
different latest version files which are associated with the given subject. Each value associated with a
specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_file entity (see figure 6) and each value of the nested
JSON object represents the information of the column.

Table 67: Information for calling getTrFilesOfKind web service

getTrFilesOfKind a
Description This method returns the information of the latest versions of all the
files of a specific kind of a given subject
URL https://139.91.210.27/model_app/getTrFilesOfKind
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETERS (parameters subject_id= Required — the id of the subject
should be passed through the
URL — query string parameter) kind= Required - kind of file
(document, spreadsheet, csv,
etc.)

Returns

200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

Page 109 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrFilesOfKind are as many as the different latest
version files of a specific kind which are associated with the given subject. Each value associated with
a specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_file entity (see figure 6) and each value of the nested
JSON object represents the information of the column.

Table 68: Information for calling getTrPreviousVersions web service

getTrPreviousVersions n
Description This method returns information of all the previous versions of a
given file
URL https://139.91.210.27/model_app/getTrPreviousVersions
Encoding application/x-www-form-urlencoded
HTTP Method GET
PARAMETER (parameter id= Required — the id of the file
should be passed through the
URL — query string parameter)
Returns 200 OK & JSON object
400 http status code if bad request
401 http status code if no SAML token inside HTTP header
403 http status code if SAML token not verified
500 http status code if internal server error

Page 110 of 121

gvD[O]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

HTTP Header Name: Authorization Value: SAML auth=<Base 64

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrPreviousVersions are as many as the different
previous version files of a given file. Each value associated with a specific key is represented by a
nested JSON object. Each key of the aforementioned nested JSON object represents the column

name of the tr_file entity (see figure 6) and each value of the nested JSON object represents the
information of the column.

Page 111 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

6 RDF storage solution for semantic metadata

6.1 Introduction

Semantic metadata refers to data that has been specially formatted for greater machine
readability, interoperability, and automated semantic reasoning. In the context of CHIC,
models and their parts are given various standardised annotations, and these annotations
are stored as metadata on a CHIC server. For the sake of interoperability and automated
reasoning, these annotations make reference to a set of standard open-source reference
ontologies created and maintained by the biomedical community at large. For example, if we
have an image of a lung, rather than annotate it with a bare string ("lung"), which would not
be semantically interoperable, we might instead annotate it with an ontology term (such as
FMA_7195: the "lung" entry in the Foundational Model of Anatomy, a widely-used anatomy
ontology). This makes it possible to use the metadata easily, without having to program ad
hoc machinery on a use-case-by-use-case basis. This also reduces ambiguity and reduces
dependence on a particular spoken language (such as English).

6.2 Tools

For storing, updating, maintaining, and querying metadata, CHIC makes use of the RICORDO
software suite, a collection of APIs that facilitate the creation, storage, and reasoning over of
metadata.

Individual annotations are stored in the form of RDF triples. RDF is the Resource Description
Framework, a longstanding W3C recommendation that forms the backbone of the semantic
web. An RDF triple consists of a subject IRI, a predicate IRI, and an object IRI (an IR/ is an
Internationalised Resource Identifier, a unique, language-agnostic name used to refer to an
object in the semantic web). For a concrete example, imagine a triple whose subject term is
(an IRI for a formal name of) a particular photograph; whose object is (an ontology term for)
"lung"; and whose predicate is (an IRl for a formal name of) "image-of". This triple means
that the image in question is an image of a lung. Crucially, by storing the fact in this form,
the fact becomes amenable to automated reasoning, in an interoperable way. The fact that
the image is an image of a lung can be understood and used generically by any kind of
software with basic W3C-compliant semantic reasoning capabilities, without any sort of
special ad-hoc programming about photographs etc.

Triples are stored in a so-called "triple-store". A triple-store is a database specially designed
to contain linked metadata in triples form. Currently, the most appropriate triple store is
Virtuoso, an open-source triple store with widely demonstrated performance and scalability.
(Another popular triple store is Fuseki, which has less of a learning curve, but CHIC has
chosen Virtuoso for its higher performance, in spite of Virtuoso’s somewhat greater learning
curve.) RICORDO provides (via its RDFSTORE program) a templating API intended to
facilitate querying a triple store with user-friendly forms (see figures). A template curator
can create a general template one time, to facilitate submission of such queries an infinite
number of times. For example, if end-users express a wish to perform searches such as “find
all resources related to drug X” or “find all resources related to drug Y”, a template curator
can create a general template for “find all resources related to drug " (the last word to
be filled in dynamically). Once this template has been added to the CHIC instance of the
RDFSTORE templating system, queries for resources related to arbitrary drugs are available

Page 112 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

e D8.3 - Implementation of the interfaces of the CHIC repositories

through a simple URL-based HTTP API. The intention is not that end-users interact with the
RDFSTORE templating system directly, but rather that other partners in the CHIC process use
the system to integrate metadata into the various other components of CHIC.

Select Template

Select a query template for querying the triple store. (The
'get_resources” and "get_relations” templates can be used to
see what sort of things are available on the sandbox.)

ChooseTemplate |
Get Annotations of Resource
Get Route of Administration
Delete Quad (Virtuoso)

Delete Triple (Fuseki)

Raw SPARQL

Get pharmML Filename

Insert Quad (Virtuoso)

Get Type of Data

Get Resources

Get Annotating Property For
Delete By Subj Pred (Virtuoso)
Resources Related to Drua

Figure 7: Prototype of RICORDO Template GUI

To create annotations using ontology terms, it is necessary to search an ontology and find
which term to use. For example, if we want to annotate a photograph as being an image of
a lung, we must first determine what is the correct, interoperable and semantically
meaningful way to refer to lung (as opposed to writing the plain-text word “lung” which is
not interoperable or semantically meaningful to a machine). This means querying an
anatomy ontology for “lung”. RICORDO provides tools for doing this. RICORDO's Local
Ontology Lookup Service (see figures) provides an API for quickly searching for ontology
terms. The Local Ontology Lookup Service was designed for light-weight deployability,
making it easy to deploy on the same machines where other CHIC infrastructure is run,
freeing CHIC from being dependent on remote, typically very slow and unreliable, outside
parties. The Local Ontology Lookup Service also includes an autocomplete API.

Page 113 of 121

gqp[b]dp

C H I C Grant Agreement no. 600841

rmm— D8.3 - Implementation of the interfaces of the CHIC repositories

What kind of lookup do you want to perform? Enter label to look up
. . Enter
: Find full IRI from label (case sensitive) |
Find full IRl from label (case sensitive)
Find short IRI from label (case sensitive)
Find full IRI from label (case insensitive) Results
Find short IRI from label (case insensitive) . .
Find label from R Results will be displayed here.
Autocomplete (case sensitive)
Autocomplete (case insensitive)
What kind of lookup do you want to perform? rlung|
Enter
Find short IRI from label (case insensitive) Ll
Results
(®) Formatted Results () Raw Results
FMA_7195

Figure 8: Selection of templates and search function

RICORDO further provides, through its OWLKB program, an AP| for automated semantic
reasoning, and can generate so-called "composite terms", semantically meaningful
combinations of existing ontology terms. For example, suppose we wish to annotate a
procedure with a date of occurrence, and suppose we have reference ontologies with terms
for "date" and for "occurrence", but not for "date of occurrence". OWLKB can be used to
generate a composite term for "date of occurrence" from the constituent terms "date" and
"occurrence", and most importantly, the composite term is semantically meaningful:
automated reasoners can understand what it means.

Page 114 of 121

gqp[b]dp

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

regional_part_of some FMA_50801

Enter

Term

» (Unlabeled class)
hitp://www.ricordo.eu/ricordo.owl#RICORDO_1418055983401

Subterms

» (Unlabeled class)
hitp://weww.ricordo.eu/ricordo.owl#RICORDO_1426802524429

» (Nothing -- the empty class)
http://www.w3.org/2002/07/owl#Nothing

» Forebrain
hitp://purl.org/cbo/owlapi/fma#FMA_B1892

» Midbrain
hitp://purl.org/cbo/owlapifma#FMA_B61993

Figure 9: Interaction with OWLKB

Official documentation for the different components of the RICORDO toolset are available at
the following addresses:

RDFStore: http://open-physiology.org/rdfstore/doc.html

Local Ontology Lookup Service: http://open-physiology.org/LOLS/doc.html
OWLKB: http://open-physiology.org/owlkb/doc.html

The RICORDO toolset and the Virtuoso triplestore have been deployed to a VPS (Virtual
Private Server) hosted by CHIC. They provide service to other CHIC components via APIs
over the HTTP protocol.

Page 115 of 121

S\]D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

6.2.1 Input and output of RICORDO tools

RICORDO tools accept input through an API over the HTTP protocol, and send their
responses as HTTP responses. For specific details about the API, and specific format of the
input to RICORDO, see RICORDO's documentation.

Roughly speaking, RICORDO sends its output in JSON format. JSON stands for JavaScript
Object Notation and it is the most appropriate format for use by web-based applications.
We say, "roughly speaking", because there are a couple of caveats.

1. For legacy reasons, RICORDO's OWLKB by default sends its responses in an HTML format;
in order to coax OWLKB into sending responses in JSON it is necessary to send a specific
header one's API request, specifically the header "Accept: application/json".

2. RICORDO's RDFStore acts as middleman between CHIC application and triple-store: in
particular, its output is simply the triplestore output. Most triplestores, including Virtuoso,
offer JSON output; Rdfstore's documentation explains how to configure RDFStore to request
JSON output from Virtuoso.

So in summary: RICORDQ's tools accept input over an APIl; documentation has been provided
for that input; and, with a couple minor caveats, RICORDO's tools send their output in JSON
format.

6.3 The CHIC semantic metadata lifecycle
Semantic metadata in CHIC has a lifecycle consisting of three stages.
6.3.1 Creation

Some annotations will be created manually, but most will be automatically generated by
various CHIC components. In order to facilitate this, CHIC's developers need APIs for
guerying the background reference ontologies in order to find which terms to use; RICORDO
provides such APlIs.

6.3.2 Insertion into triple store

Once generated, an annotation will be entered into the triplestore for storage and
subsequent querying. Individual triples can be inserted one-by-one via SPARQL (or via more
user-friendly forms generated from triples). But most triples will probably be bulk-loaded:
multiple (possibly very many) automatically generated triples are first written to a file, in
RDF format, and the file is then bulk-loaded into the Virtuoso triple store using its bulk-
loading features. This allows Virtuoso to take advantage of multiple CPU cores, as well as to
loading algorithms designed for bulk-loading, in order to add large amounts of triples to the
store very quickly.

6.3.3 Querying

Once stored in the triplestore, triples are accessed by querying. The triplestore can be
queried directly, using the SPARQL query language. This, however, will be invisible to the
end-user: such queries will mostly be done programmatically "under the hood" by other
programs in CHIC. (As an alternative to SPARQL, such other programs can also use
RICORDQ's RDFSTORE template system; this decision is up to the developers of the other
components of CHIC.) In particular, our intention is that the ultimate end-user be able to

Page 116 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

qguery and use the metadata via friendly graphical front-ends requiring no knowledge of the
underlying technology.

6.4 What can be annotated?

Flexibility is one of the key virtues of the RDF data format. Rather than referring to objects
with machine-specific designators (filenames, memory locations, database indices, etc.),
objects are referred to by IRI (Internationalized Resource ldentifiers, another W3C standard),
making RDF agnostic about technical implementation details. In short, anything that can be
given a stable IRI, can be annotated.

Page 117 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

7 Conclusions

The above technical description provides the basis for the development and maintenance of
information flow between the core repositories of resources in CHIC. Given that the
technical specification of these interfaces is in itself in a state of evolution, further detailed
documentation (and, indeed, updates to this technical description) is provided via the up-to-
date web links associated with the respective sections. A practical description of the
application of these interfaces in the data and knowledge management of the CHIC
hypermodelling infrastructure will be provided in the deliverable D7.3, on M36.

Page 118 of 121

SVD[OJ"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

8 References

* OData, “An open protocol to allow the creation and consumption of queryable and
interoperable RESTful APIs in a simple and standard way.”, [Online]. Available:
http://www.odata.org.

e ASP.NET Web API, “ASP.NET Web API is a framework that makes it easy to build HTTP
services that reach a broad range of clients, including browsers and mobile devices.”,
[Online]. Available: http://www.asp.net/web-api.

e M. Kistler, S. Bonaretti, M. Pfahrer, R. Niklaus, P. Bichler, The Virtual Skeleton Database: An
Open Access Repository for Biomedical Research and Collaboration. J. Med. Internet Res.
15:e245, 2013.

* C. Rosse, and J. Mejino. A reference ontology for biomedical informatics: the Foundational
Model of Anatomy. J. Biomed. Inform. 36:478-500, 2003.

* SPARQL, “Query Language for Resource Description Framework (RDF)”, [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query.

® https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2

® L. Richardson and S. Ruby, Restful Web Services, 1st ed. O’Reilly Media, May 2007.

* H. Lockhart et al, “Security Assertion Markup Language (SAML) V2.0 Technical Overview”,
http://www.oasis-open.org/committees/download.php/14361/sstc-saml-tech-overview-2.0-

draft-08.pdf

* open-physiology.org website

e RDFStore 2.0 Documentation: http://open-physiology.org/rdfstore/doc.html

e OWLKB 2.0 Documentation: http://open-physiology.org/owlkb/doc.html

e LOLS Documentation: http://open-physiology.org/LOLS/doc.html

Page 119 of 121

S\;D[oj"V

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Appendix 1 — Abbreviations and acronyms

SOA Service Oriented Architecture
REST Representational State Transfer
AP Application Programming Interface
HTTP Hypertext Transfer Protocol

URI Universal Resource Identifier

STS Security Token Service

SAML Security Assertion Markup Language

SOAP Simple Object Access Protocol

RST Request Security Token

RSTR Request Security Token Response
SP Service Provider

IdP Identity Provider

SP Service Provider

Sso Single Sign-On

RFC Request for Comments

JSON JavaScript Object Notation

XML Extensible Markup Language

UTF Unicode Transformation Format

URL Uniform Resource Locator

TP Trusted Third Party

FMA Foundational Model of Anatomy
RDF Resource Description Framework
W3C World Wide Web Consortium

IRI Internationalised Resource Identifier

OWLKB Web Ontology Language KnowledgeBase
LOLS Local Ontology Lookup Service

VPS Virtual Private Server

SPARQL SPARQL Protocol and RDF Query Language

CPU Central Processing Unit

Page 120 of 121

S\,D[O]Q,p

C H I C Grant Agreement no. 600841

D8.3 - Implementation of the interfaces of the CHIC repositories

Page 121 of 121

