

Deliverable No. 8.4

Report on the final system

Grant Agreement No.: 600841

Deliverable No.: D8.4

Deliverable Name: Report on the final system

Contractual Submission Date: 30/09/2016

Actual Submission Date: 30/09/2016

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 2 of 195

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and
Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D8.4

Document name: Report on the final system

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

PU

Version: 1.0

Actual Submission Date: 30/09/2016

Editor:
Institution:
E-Mail:

Nikolaos Tousert
ICCS-NTUA
tousertn@mail.ntua.gr

ABSTRACT:

This document presents the final report of the CHIC Repositories. More specifically, this deliverable
outlines the current status of the Model and Tool, the Clinical Data, the In Silico Trial and the RDF
CHIC Repositories. Both the user interface and the web services that expose the content of the
aforementioned Repositories to the other CHIC components are being documented. Apart from the
interface of the aforementioned Repositories, their architecture which conforms to the integrated
platform guidelines is also disclosed. Furthermore, as described in this document, the
implementation of the appropriate policies and the security mechanisms ensure that all the
Repositories operate within the defined legal and ethical framework of CHIC. Finally, some
guidelines are being provided for the illustration of some common workflows related to the
Repositories, such as the storage of a new model, the retrieval of all the data concerning a
complete in silico trial, the interactions with the Local Ontology Lookup Service and the data flow.

KEYWORD LIST:

Model Repository, Clinical Data Repository, In Silico Trial Repository, semantics, hypermodel,
hypomodel, model, single sign-on, RESTful web services, medical data, imaging data, clinical data,
genetic data, data upload workflow, trial center, data object, annotation, auditing, domain model,
Local Ontology Lookup Service, RDF store, OWLKB, pseudonymization, resources, Knowledge
Database, Resource Description Framework, Human Phenotype Ontology

1
 R=Report, P=Prototype, D=Demonstrator, O=Other

2
 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group

specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 3 of 195

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 600841.

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 4 of 195

MODIFICATION CONTROL

Version Date Status Author

0.1 15/08/2016 Index Draft Nikolaos Tousert, ICCS-NTUA

0.2 18/08/2016 Draft Roman Niklaus, UBERN

0.3 24/08/2016 Draft Philippe Büchler, UBERN

0.4 08/09/2016 Draft Nikolaos Tousert, ICCS-NTUA

0.5 12/09/2016 Draft Nikolaos Tousert, ICCS-NTUA

0.6 15/09/2016 Draft Pierre Grenon, UCL

0.7 18/09/2016 Revision Dimitra Dionysiou, ICCS-NTUA

0.8 22/09/2016 Draft Nikolaos Tousert, ICCS-NTUA

0.9 26/09/2016 Draft Nikolaos Tousert, ICCS-NTUA

1.0 30/09/2016 Final Georgios Stamatakos, ICCS-NTUA

List of contributors

 Georgios Stamatakos, ICCS-NTUA

 Dimitra Dionysiou, ICCS-NTUA

 Nikolaos Tousert, ICCS-NTUA

 Roman Niklaus, UBERN

 Philippe Büchler, UBERN

 Pierre Grenon, UCL

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 5 of 195

 Contents

1 EXECUTIVE SUMMARY.. 14

2 INTRODUCTION .. 16

3 AUTHENTICATION .. 18

4 MODEL AND TOOL REPOSITORY .. 19

4.1 INTRODUCTION .. 19
4.2 ARCHITECTURE OF MODEL AND TOOL REPOSITORY ... 19
4.3 THE USER INTERFACE OF MODEL AND TOOL REPOSITORY .. 29

4.3.1 Wizard for storing new models ... 30
4.3.2 Browsing and filtering the content of Model and Tool Repository .. 34

4.4 MODEL AND TOOL REPOSITORY WEB SERVICES ... 38
4.5 INTEGRATION OF MODEL AND TOOL REPOSITORY WITH CHIC TRIPLESTORE ... 67
4.6 THE MODEL REPOSITORY PUBLISHES EVENTS TO OTHER CHIC COMPONENTS THROUGH AMQP PROTOCOL 71

5 THE CLINICAL DATA REPOSITORY ... 73

5.1 INTRODUCTION .. 73
5.2 DATA FLOW AND INTERACTION .. 73
5.3 DATA TYPES AND STANDARDS .. 75
5.4 GENERAL CONCEPTS ... 76

5.4.1 Linking ... 76
5.4.2 Annotation and Search .. 77
5.4.3 Validation and Versioning ... 77
5.4.4 Data Organization ... 78

5.5 AUDITING ... 78
5.5.1 Data Model.. 78
5.5.2 Architecture ... 79
5.5.3 Setup on the CDR ... 80

5.6 DOMAIN MODEL .. 85
5.7 WEB-BASED USER INTERFACE .. 86
5.8 RESTFUL APPLICATION PROGRAMMING INTERFACES .. 87

5.8.1 HTTP method definitions ... 87
5.8.2 Pagination ... 88
5.8.3 Include ... 89
5.8.4 Requests, Responses and Errors .. 90
5.8.5 Resource Description Template ... 91
5.8.6 Dynamic Search ... 91

5.9 SEMANTIC INTEGRATION WITH RICORDO .. 94
5.9.1 Interactions with the Local Ontology Lookup Service .. 95
5.9.2 Interactions with the RDFstore .. 96

5.10 SUMMARY... 97

6 IN SILICO TRIAL REPOSITORY .. 98

6.1 INTRODUCTION .. 98
6.2 ARCHITECTURE OF THE IN SILICO TRIAL REPOSITORY .. 98
6.3 THE USER INTERFACE OF THE IN SILICO TRIAL REPOSITORY .. 107

6.3.1 Wizard for storing a new experiment .. 108
6.3.2 Browsing the content of the In Silico Trial Repository ... 114

6.4 IN SILICO TRIAL REPOSITORY WEB SERVICES ... 119

7 SEMANTIC METADATA MANAGEMENT ... 158

7.1 RELEVANT CHIC RESOURCES .. 158
7.2 ANNOTATION OF RESOURCES IN ORDER TO MAKE INTERPRETATION EXPLICIT AND USAGE OF PROCESSABLE REFERENCE

KNOWLEDGE MODELS (ONTOLOGIES) ... 158
7.3 SEMANTIC COMPONENTS AND RICORDO ARCHITECTURE .. 159

7.3.1 Annotations Store .. 160
7.3.2 Knowledge Database... 160

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 6 of 195

7.3.3 Annotation Store (RDF Triplestore) ... 161
7.3.4 Knowledge Base (OWL Knowledge Base) .. 161

7.4 SEMANTIC SERVICES .. 161
7.4.1 RDF Services .. 161
7.4.2 Installation Requirements ... 161
7.4.3 Installation Steps ... 162
7.4.4 Running RDFstore 2.0 .. 162
7.4.5 Simple GUI ... 163
7.4.6 Template System ... 164

7.4.6.1 Advanced Template Commands .. 165

7.4.6.2 RDFStore API .. 165

7.4.7 Low Level Services ... 166
7.4.7.1 Query ... 166

7.4.7.2 Insertion .. 166

7.4.7.3 Deletion ... 166

7.4.8 Specific TRIPLEStores Documentation ... 166
7.4.8.1 Virtuoso ... 166

7.4.8.1.1 Queries .. 166

7.4.8.1.2 Adding Triples .. 167

7.4.8.2 Fuseki ... 168

7.4.8.2.1 Queries .. 168

7.4.8.2.2 Adding Triples .. 169

7.4.9 OWL Ontology Services ... 170
7.4.10 Installation .. 170
7.4.11 Loading an Ontology ... 170

7.4.11.1 Command line arguments ... 170

7.4.12 Simple GUI ... 171
7.4.13 KBCaller Java Library ... 171

7.4.13.1 Constructor .. 171

7.4.13.2 API Methods .. 172

7.4.14 OWLKB API .. 172
7.4.14.1 Subterms ... 172

7.4.14.2 Parents ... 173

7.4.14.3 Children ... 173

7.4.14.4 Siblings ... 173

7.4.14.5 Subhierarchy .. 173

7.4.14.6 Eqterms ... 173

7.4.14.7 Terms ... 173

7.4.14.8 Instances .. 174

7.4.14.9 Labels ... 174

7.4.14.10 Search .. 174

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 7 of 195

7.4.14.11 Addlabel ... 174

7.4.15 JSON .. 174
7.4.16 Verbose Results ... 175
7.4.17 Manchester Syntax ... 175
7.4.18 Terminology Services .. 175
7.4.19 Prerequisite for Installation .. 176
7.4.20 Installation Instructions (tested on Linux and Mac) .. 176
7.4.21 LOLS File Preparation .. 176

7.4.21.1 Multiple OWL Files .. 177

7.4.22 Running the LOLS Server ... 177
7.4.23 Simple GUI ... 177
7.4.24 LOLS API .. 178

7.4.24.1 IRI ... 178

7.4.24.2 Label .. 178

7.4.24.3 Label Case Insensitive .. 178

7.4.24.4 Label shortiri .. 178

7.4.24.5 Label shortiri Case Insensitive ... 178

7.5 CHIC SEMANTIC MODELS .. 179
7.5.1 Ontology of CHIC Resources (Main Concept in CHICRO) ... 179
7.5.2 Annotation Vocabulary included in CHICRO Schema .. 180

7.5.2.1 Service operations using the annotation vocabulary included in CHICRO Schema 183

7.5.2.2 Template-based service operations using the annotation vocabulary 183

7.5.2.2.1 Get_Hypomodels ... 183

7.5.2.2.2 Get_HypomodelInputParameter_ByInterpretation_exactMatch 184

7.5.2.2.3 Get_HypomodelOutputParameter_ByInterpretation_exactMatch 185

7.5.2.2.4 Get_Consistent_HypomodelOutputParameter_ByInterpretation_exactMatch

 186

7.5.3 Domain Ontologies .. 187
7.6 ONTOLOGY AUTHORING (PROTOTYPE) ... 189

8 CONCLUSION .. 191

9 REFERENCES ... 192

Appendix – Abbreviations and acronyms ... 194

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 8 of 195

Figures

Figure 1: Brokered Authentication Flow with the CHIC Repositories ... 18

Figure 2: Main entities of Model and Tool Repository .. 20

Figure 3: Entity Relationship (ER) diagram of Model and Tool Repository ... 21

Figure 4: Topology of the components of the Model Repository ... 27

Figure 5: Components of the Model Repository Django Application ... 28

Figure 6: The main page of the Model Repository .. 30

Figure 7: The first step of the wizard. The user provides the basic information of the new model (title,
description, etc.) .. 31

Figure 8: The second step of the wizard. The user provides information regarding the parameters of
the new model (title, description, units, data range, etc.) ... 31

Figure 9: The third step of the wizard. The user uploads files related to the new model (source code,
executables, documentation, etc.) .. 32

Figure 10: The fourth step of the wizard. The user categorizes the new model based on the 13
Perspectives that have been defined within CHIC .. 32

Figure 11: The fifth step of the wizard: The user provides information about the references that are
related to the new model (journal articles, conference proceedings, etc.).. 33

Figure 12: The wizard informs the user about the invalidity of the data when submitting the form .. 33

Figure 13: A screenshot of part of the content of the Model Repository ... 35

Figure 14: The user can apply many actions to a model (view the parameters, view the files, etc.) ... 36

Figure 15: The parameters of the model named "UOXFL: Vasculature Model" are being displayed
below the model, after the corresponding user request .. 36

Figure 16: The user is going to update the parameter "cell_cycle_time" which belongs to the model
"Lung Oncosimulator" ... 37

Figure 17: The user is redirected to a submission page, in order to update the information related to
the parameter "cell_cycle_time" .. 37

Figure 18: The user is able to filter the available models based on their categorization and their
Perspective values ... 38

Figure 19: The web page where the user categorizes their model ... 68

Figure 20: Topology of the CHIC components that handle the semantic annotation of the models ... 69

Figure 21: The general workflow for data upload ... 74

Figure 22: Example of the linking to relate data objects in the clinical data repository for a multi-
modal brain segmentation. In this case, four different MRI image datasets are used for the
segmentation of brain tumours .. 77

Figure 23: The clinical data repository allows each user to freely organize the data into his desired
folder structure for easy access to the data needed for his research. The structure created by one
user can be directly shared to other co-workers. Modifications made by one user are immediately
visible in the folder of the other collaborators. The mechanism should allow efficient collaboration
between modellers working on the same tumour model. ... 78

Figure 24: The audit data model XDASv2 used by the clinical data repository for auditing. 79

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 9 of 195

Figure 25: The components of the audit systems and the interactions with the clinical data repository
 ... 79

Figure 26: The log4net.config file to configure the clinical data repository auditing 80

Figure 27: An excerpt of the file filebeat.yml to configure Filebeat on the clinical data repository 81

Figure 28: The PowerShell script to install Filebeat as a Windows service on the clinical data
repository .. 81

Figure 29: The logstash.conf file to configure Logstash on the clinical data repository 81

Figure 30: Installing Logstash as a Windows service on the clinical data repository using NSSM 82

Figure 31: Filebeat and Logstash running as Windows services on the clinical data repository 82

Figure 32: An example of the Kibana user interface displaying audit records using XDASv2 83

Figure 33: A sample audit record in JSON format using the XDASv2 data model generated by the
clinical data repository and processed by Filebeat and Logstash ... 84

Figure 34: The domain model of the clinical data repository with domain classes (blue), domain
enumerations (brown) and their relationships represented as connecting lines. 85

Figure 35: The web-based user interface main view of the clinical data repository 86

Figure 36: The dynamic search query builder integrated in the web-based user interface 87

Figure 37: A visual representation of interactions between clinical data repository and RICORDO
components. .. 95

Figure 38: User dialog to annotate an object with anatomical regions using the autocomplete
function offered by the Local Ontology Lookup Service (LOLS). ... 96

Figure 39: Entity Relationship (ER) diagram of the In Silico Trial Repository 100

Figure 40: The In Silico Trial Repository has been integrated into the Django Web Framework 106

Figure 41: Integration of the In SIlico Trial Repository into the CHIC Platform 107

Figure 42: The main page of the In Silico Trial Repository .. 108

Figure 43: The first step of the wizard. The user provides information related to the in silico trial to
which the new in silico experiment belongs ... 109

Figure 44: The second step of the wizard. The user provides information related to the initial state of
the patient ... 110

Figure 45: The third step of the wizard. The user provides information related to the final - simulated
state of the patient .. 110

Figure 46: The fourth step of the wizard. The user provides information related to the new in silico
experiment .. 111

Figure 47: The fifth step of the wizard. The user uploads one or more output files related to the
simulation .. 111

Figure 48: The sixth step of the wizard. The user uploads one or more input files related to the
simulation .. 112

Figure 49: The seventh step of the wizard. The user provides one or more references related to the in
silico trial ... 112

Figure 50: The eighth step of the wizard. The user provides one or more references related to the in
silico experiment ... 113

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 10 of 195

Figure 51: The wizard informs the user about the invalidity of the data when submitting the form 113

Figure 52: Part of the page of the In Silico Trial Repository which indicates the available in silico trials
 ... 115

Figure 53: The user is going to update the description of the in silico trial which is related to
Nephroblastoma Multimodeller Hypermodel... 116

Figure 54: The page where the user applies changes to the trial related to Nephroblastoma
Multimodeller Hypermodel ... 116

Figure 55: Information related to the last four simulations (in silico experiments) of Nephroblastoma
multimodeller hypermodel ... 117

Figure 56: The user downloads the output data of the last in silico experiment which is related to
Nephroblastoma Multimodeller Hypermodel... 118

Figure 57: The user is able to filter the available in silico experiments by providing a pseudonymized
identification of the patient used in the simulation ... 118

Figure 58: (Image obtained from http://www.ricordo.eu.). The overall RICORDO architecture in
relation to envisioned (non-CHIC related) application contexts ... 159

Figure 59: Simple Rdfstore 2.0 GUI ... 164

Figure 60: A screenshot of CHCRO visualised in the Protégé ontology editor. The left top panel shows
the class primitive hierarchy (there are no classified models nor inferred specialisations appearing)
 ... 180

Figure 61: Example of SPARQL query to retrieve information to be used in GUI 183

Figure 62: Example of the mapping of URIs related to the annotation for Perspective IV with the
labels corresponding to the concepts to be displayed in a GUI (Output retrieved from RDF Store) . 183

Figure 63: Excerpt of the HPO hierarchy ... 188

Figure 64: Specializations of neoplasm listed from inference in the knowledge base 189

Figure 65: Query results for models annotated with a specialization of neoplasm in the triple store
 ... 189

Figure 66: The knowledge base and its API support the creation of terms from their logical definition.
Such terms can then be labelled with a human readable name and can then be made available to the
user through their lexical information or by other means of sea ... 190

file:///C:/Users/Nick/Desktop/final_deliverable_8.4/CHIC_600841_D8-4_Report_on_the_final_system_v1-0.docx%23_Toc463007027

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 11 of 195

Tables

Table 1: External components (dependencies, libraries, applications) of the Model and Tool
Repository ... 26

Table 2: Information for calling storeTool web service ... 39

Table 3: Information for calling getAllTools web service .. 40

Table 4: Information for calling getToolById web service ... 41

Table 5: Information for calling getToolByParameterId web service.. 42

Table 6: Information for calling getToolByUuid web service .. 43

Table 7: Information for calling deleteToolById web service .. 44

Table 8: Information for calling storeParameter web service .. 44

Table 9: Information for calling deleteParameter web service ... 46

Table 10: Information for calling getParametersByToolId web service .. 47

Table 11: Information for calling getMandatoryParametersByToolId web service 49

Table 12: Information for calling getInputParametersByToolId web service 50

Table 13: Information for calling getOutputParametersByToolId web service 51

Table 14: Information for calling storeProperty web service ... 52

Table 15: Information for calling getAllProperties web service .. 53

Table 16: Information for calling getPropertyById web service.. 54

Table 17: Information for calling storePropertyValue web service .. 54

Table 18: Information for calling deletePropertyValue web service .. 55

Table 19: Information for calling getPropertyValuesByToolId web service .. 56

Table 20: Information for calling deletePropertyById web service .. 57

Table 21: Information for calling storeReference web service ... 58

Table 22: Information for calling deleteReferenceById web service .. 59

Table 23: Information for calling getReferencesByToolId web service ... 60

Table 24: Information for calling storeFile web service .. 61

Table 25: Information for calling deleteFile web service .. 62

Table 26: Information for calling getFileById web service .. 63

Table 27: Information for calling getPackageByToolId web service ... 64

Table 28: Information for calling getFilesOfKind web service ... 65

Table 29: Information for calling getFilesByToolId web service ... 66

Table 30: The RDF statements that represent the semantic annotation of the categorization of the
model named ”ICCS Wilms Oncosimulator” for perspective V ... 70

Table 31: Exchange, Routing Key and Body values for events published by the Model Repository 72

Table 32: Parties involved in the general workflow for data upload .. 75

Table 33: Data types and standards .. 75

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 12 of 195

Table 34: The different sources of the data types .. 76

Table 35: HTTP methods supported by the clinical data repository REST API 87

Table 36: The pagination concept applied to large result sets returned by the clinical data repository
 ... 88

Table 37: The includable attribute demonstrated on the basis of the groups resource implemented by
the clinical data repository .. 89

Table 38: The possible return states used by the clinical data repository to indicate a successful
completion of a request .. 90

Table 39: The possible return states used by the clinical data repository to indicate an unsuccessful
completion of a request .. 90

Table 40: The template used to describe the API endpoint resources of the clinical data repository . 91

Table 41: External components (dependencies, libraries, applications) of the In Silico Trial Repository
 ... 104

Table 42: Information for calling storeTrial web service .. 119

Table 43: Information for calling getAllTrials web service .. 120

Table 44: Information for calling getUserTrials web service ... 121

Table 45: Information for calling getTrialById web service ... 122

Table 46: Information for calling getTrialByModelId web service .. 123

Table 47: Information for calling deleteTrialById web service.. 124

Table 48: Information for calling storeExperiment web service ... 125

Table 49: Information for calling getUserExperiments web service ... 126

Table 50: Information for calling getUserPendingExperiments web service 127

Table 51: Information for calling getAllExperimentsByTrialId web service .. 128

Table 52: Information for calling getExperimentById web service ... 129

Table 53: Information for calling getExperimentByUuid web service .. 130

Table 54: Information for calling getExperimentStatusById web service ... 131

Table 55: Information for calling getExperimentsByStatus web service... 131

Table 56: Information for calling updateExperimentStatus web service .. 132

Table 57: Information for calling deleteExperimentById web service .. 133

Table 58: Information for calling storeMiscellaneousParameter web service 134

Table 59: Information for calling getAllMiscellaneousParameters web service 135

Table 60: Information for calling getUserMiscellaneousParameters web service 136

Table 61: Information for calling getAllMiscellaneousParametersByExperimentId web service 137

Table 62: Information for calling getMiscellaneousParameterById web service 138

Table 63: Information for calling deleteMiscellaneousParameterById web service 139

Table 64: Information for calling storeSubject web service .. 140

Table 65: Information for calling deleteSubjectById web service ... 141

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 13 of 195

Table 66: Information for calling getAllSubjects web service ... 142

Table 67: Information for calling getUserSubjects web service .. 143

Table 68: Information for calling getSubjectById web service .. 143

Table 69: Information for calling storeTrReference web service .. 145

Table 70: Information for calling getAllTrReferences web service ... 146

Table 71: Information for calling getTrReferencesByTrialId web service ... 147

Table 72: Information for calling getTrReferencesByExperimentId web service 148

Table 73: Information for calling deleteTrReferenceById web service ... 149

Table 74: Information for calling storeLinkToReference web service ... 150

Table 75: Information for calling deleteReferenceLinkById web service .. 151

Table 76: Information for calling storeTrFile web service ... 152

Table 77: Information for calling deleteTrFile web service ... 153

Table 78: Information for calling getTrFileById web service ... 154

Table 79: Information for calling getTrFilesOfKind web service ... 154

Table 80: Information for calling getTrFilesBySubjectId web service ... 155

Table 81: Information for calling getUserTrFiles web service ... 156

Table 82: RDFstore command-line options ... 162

Table 83: Annotation properties applying to all objects ... 180

Table 84: Annotation properties applying to models ... 181

Table 85: Annotation properties applying to model parameters ... 182

Table 86: Annotation property for making a semantic type explicit .. 182

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 14 of 195

1 Executive Summary

Deliverable 8.4 outlines the final report of the Repositories developed by the CHIC project,
concerning the Model and Tool Repository, the Clinical Data Repository, the In Silico Trial Repository
and the Metadata Repository. The aforementioned Repositories are tailored to the needs and the
clinical scenarios of the CHIC project and aim to provide the community with a collaborative interface
for exchanging knowledge and sharing work in an effective and standardized way. As documented in
this deliverable, the utilization of a number of open source features and tools is expected to enhance
usability and accessibility. The design and the development of all the CHIC Repositories have been
driven by the guidelines produced by the other work packages, especially WP2 (user needs and
requirements) and wp5 (IT Architecture). Since both the clinical data and the models stored in the
CHIC Repository environment must conform to the legal and ethical framework developed in WP4,
special attention has been given to the development of appropriate authentication and authorization
mechanisms so as to ensure that only authorized persons have access to the content of the
Repositories. To this end, as presented in chapter 3, the Repositories make use of the brokered
authentication mechanism that has been proposed by WP 5. Both the design and the
implementation of the aforementioned Repositories are covered in this document.

In more detail, documentation regarding the design and the architecture of the Model and Tool
Repository is included in this document. The aforementioned architecture is general enough to
support the storage of multiscale cancer models, linkers and data transformation tools along with all
the related information (perspectives, parameters, etc.). The documentation of the web user
interface which is built upon the aforementioned architecture serves as a reference point for all
researchers who might want to interact with the Model Repository, while the documentation of the
web services aims to provide the guidelines for the developers of the other CHIC components (CRAF,
Hypermodelling Execution Framework, Hypermodelling Editor) that interact with the Repository
through the web interfaces. Moreover, in order for the information related to the categorization of
the models based on the 13 perspectives to be stored in the CHIC semantic infrastructure in the form
of triples, the Model and Tool Repository has been integrated with the CHIC triplestore.

Information related to the implementation of the Clinical Data Repository which has been available
to the CHIC users and is running on the CHIC cloud infrastructure is available through this deliverable.
More specifically, the Clinical Data Repository includes all the features required to store the different
types of data produced during the clinical workflow, which not only includes patient and treatment
information, but also medical images, generic examination and histology. Just like the Model
Repository, the web services that provide access to the content of the Clinical Data Repository are
also presented in this document, as well as its user interface which has been developed using
modern web technologies. Furthermore, reference is being made to the auditing system and the
integration of the Clinical Data Repository with the CHIC RICORDO framework so as to retrieve
information from the data uploaded on the system and storing the corresponding semantic triples
back into the CHIC triplestore.

Regarding the In Silico Trial Repository, detailed documentation is being provided concerning the
workflows related to the persistent storage, the retrieval or the updating of the simulation scenarios
and the in silico predictions, either through the user interface or through the web services. In
addition to this, the architecture of the aforementioned Repository which is based on a relational
database, as well as its integration into the whole CHIC platform are also outlined.

Finally, reference is being made to the CHIC Metadata Repository which constitutes the semantic
layer that handles the annotation of the CHIC resources (models, clinical data) encoded in RDF. The
Metadata Repository, which consists of the Annotations Store and the Knowledge Database, along
with some controlled vocabularies, facilitates the creation of machine-processable metadata
descriptions of the CHIC resources. As described in this deliverable, the semantically integrated set of

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 15 of 195

the aforementioned descriptions can be interrogated by the other CHIC components through the
RDF and OWL ontology services in order to produce comparisons and elicit relationships. For
instance, this might be applicable to the Hypermodelling Editor in order to elicit relationships of
consistency and correspondence between the parameters or between the models.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 16 of 195

2 Introduction

The documentation is an important part of software engineering, and it includes the following types:

1. Requirements – Statements that identify attributes, capabilities, characteristics or qualities
of a system.

2. Architecture/Design – Overview of software. Includes relations to an environment and
construction principles to be used in design of software components.

3. Technical – Documentation of code, algorithms, interfaces and APIs.

4. End user – Manuals for the end-user, system administrators and support staff.

5. Marketing – How to market the product and analysis of the market demand.

Since the Requirements are addressed by WP2, entitled “User Needs and Requirements”, the
Architecture is addressed by WP5 “IT Architecture” and the Marketing is addressed by WP12
“Dissemination and Exploitation”, this document mostly addresses the Technical and the End user
types of documentation.

Thereafter, this deliverable includes some manuals for the end-user which describe some features of
the CHIC Repositories and aim at assisting the user in realizing them. Great effort has been made for
the user documentation to be simple, consistent, up to date and not confusing. The Model and Tool
Repository user documentation, which is included in chapter 4.3, intends to give assistance to
researchers for storing their new models, updating their parameters or even filtering the existing
models based on their perspective categorization. The web-based user interface presented in
chapter 5.7 constitutes a comprehensive manual that helps authorized users to master the Clinical
Data Repository and easily access the stored medical data (imaging, clinical, histological and genetic).
Some user guidelines are also being given in chapter 6.3, concerning the interaction with the In Silico
Trial Repository (storage and retrieval of all the data concerning a complete in silico trial).

In addition to the documentation related to the user interface of the CHIC Repositories, this
deliverable also includes user guides for accessing the interfaces (APIs). More specifically, chapters
4.4, 5.8, 6.4 and 7.4 constitute a complete information guide for the developers of the other CHIC
components in order to programmatically connect to the CHIC Repositories. The web services that
have been documented in the aforementioned chapters expose the contents of the Model, Clinical
Data, In Silico Trial and Metadata Repositories to the other CHIC components (Hypermodelling Editor,
CRAF, Hypermodelling Execution Framework, etc.).

Since both the data and the models stored in the CHIC Repository environment must conform to the
legal and ethical framework developed by WP4, the authentication and authorization mechanism
which is presented in chapter 3 ensures that only authorized people have access to the content of
the Repositories.

Even though the IT Architecture of the CHIC platform is addressed by WP5, the authors consider the
design and the internal parts of the Repositories relevant to this deliverable, and thereafter, chapter
4.2 outlines the software architecture of the Model and Tool Repository, chapters 5.3, 5.4 and 5.6
address the domain model, the data types and some general concepts of the Clinical Data
Repository, chapter 6.2 analyzes the design and the internal components of the In Silico Trial
Repository, and finally, chapter 7.3 presents the semantic components and the RICORDO
architecture.

The deliverable is also complemented with presentation related to the semantic integration with
RICORDO, which is addressed in chapters 4.5 and 5.9 concerning the Model and the Clinical Data
Repository respectively, whereas the publication of events from the Model Repository and the

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 17 of 195

auditing mechanism of the Clinical Data Repository are described in chapters 4.6 and 5.5
respectively.

Finally, chapter 7 introduces, among others, the annotation of the CHIC resources which make their
interpretation explicit, the ontology of them and the annotation vocabulary included in CHICRO
schema.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 18 of 195

3 Authentication

The CHIC Repositories make use of the security framework introduced in Deliverable “D5.2 - Security
guidelines and initial version of security tools”. Therefore, the users are not directly authenticated by
the Repositories (Service Providers) themselves but rather by the CHIC authentication broker
(Identity Provider) to support Single Sign-On (SSO). This procedure is called brokered authentication.

The CHIC security framework further distinguishes between brokered authentication for web services
including REST and for web sites. As the CHIC Repositories provide complete access to the features of
their databases with the help of REST interfaces, the Security Token Service (STS) provided by CHIC is
fully integrated in the authentication process. Before calling a REST interface of the Repositories, the
client needs to send a SOAP (Simple Object Access Protocol) request containing an RST
(RequestSecurityToken) to the STS. The STS then returns the identity assertion as a SAML token,
embedded in a RSTR (RequestSecurityTokenResponse). The SAML token can then be passed to the
REST interface through the HTTP authorization header.

The following procedure is needed in order to supply a SAML token to a CHIC Repository:

1. Get the SAML token from the CHIC Security Token Service.

2. ZLIB (RFC 1950) compress the retrieved SAML token.

3. Base64 (RFC 4648) encode the compressed SAML token.

4. Supply an "Authorization" header with content "SAML auth=" followed by the encoded
string.

The brokered authentication for the web sites of the CHIC Repositories makes use of SAML Web
Browser SSO Profile as suggested by the CHIC security framework. The SAML Web Browser SSO
Profile is initiated by an end user who visits the protected web site of the corresponding Repository,
also called a Service Provider (SP). The SP redirects the user to the assertion provider (also called
Identity Provider (IdP)) passing through an authentication request. The IdP will request the user to
authenticate and upon successful authentication the IdP will issue an identity assertion for the user
containing all information on the user needed by the SP to authenticate and authorise him. The
assertion is then sent back to the SP that will use it to determine whether the user is allowed to
access the requested resource. Figure 1 depicts the brokered authentication flow with the CHIC
Repositories.

Figure 1: Brokered Authentication Flow with the CHIC Repositories

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 19 of 195

4 Model and Tool Repository

4.1 Introduction

The CHIC Model and Tool Repository permanently hosts multiscale cancer models that have been
developed in the context of the CHIC project. It also hosts tools such as linkers and data
transformation tools which are needed for the construction of hypermodels. For each model, the
Model Repository contains all the related information, including descriptive information (abstract
and detailed description, references, etc.), input and output parameters (for proper linking with
other models and tools), source files, documentation and executables of the models. Moreover,
information about model authorship, ownership, and access permissions are also stored in the
Model Repository database. In order for the user to be able to interact with the Repository, a web-
based interface has been designed and implemented. Apart from the aforementioned graphical
interface, many web services have been developed so as to be able to expose the contents of the
Repository to other tools developed in the CHIC project, such as the hypermodelling Editor, the CRAF
(Clinical Research Application Framework) and the Hypermodelling Framework. Up to now, more
than 10 hypomodels, 4 hypermodels and 1 tool have been permanently and safely stored in the
Repository in the context of CHIC project, and all this information is available to the user either
through the user interface of the Model Repository (https://mr.chic-vph.eu), or through the user
interface of the other CHIC components, such as the Hypermodelling Editor and the CRAF. The user is
now able to store in an elegant and user-friendly way new models in the Model Repository through a
five-step wizard, or even browse, view, change and delete the content of the Repository. Based on
the new requirements that came into effect during the CHIC project, the Model Repository has
evolved from a simple and functional storage component, to a fully integrated and user-friendly web
application that supports the execution of complex workflows. Even if the current status of the
Model Repository conforms to the user needs and requirements (WP2), to the legal and ethical
framework (WP4), to the IT Architecture (WP5) and to the integrated platform guidelines (WP10),
the Repository is expected to be constantly updated throughout the remaining period of the CHIC
project.

4.2 Architecture of Model and Tool Repository

As shown in figure 2, the Model and Tool Repository consists of four main entities, the models/tools,
the properties, the parameters and the files.

https://mr.chic-vph.eu/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 20 of 195

Figure 2: Main entities of Model and Tool Repository

 The basic principles of the Model Repository are [1]:

 Each model/tool has basic descriptive information, stored in the entity “mr_tool”. This
information uniquely defines the model/tool and differentiates it from the other
models/tools.

 Each model is categorized based on the perspective from which it is viewed in the basic
science context. This metamodeling description of each hypomodel based on the CHIC 13
perspective approach facilitates its technology mediated linking [2]. A detailed
documentation of the 13 perspectives and their categories is presented in “D6.2 CHIC cancer
component models: initial tested versions”.

 The descriptive information of the perspectives is stored in the entity “mr_property”. This
entity does not contain the value of the perspective (related to a specific model/tool), but
only the description of the perspective. The value that a perspective takes in case of a
specific model/tool is stored in the entity “mr_tool_property”.

 The models are treated as generic stubs, as described in “D7.1: Hypermodelling
specifications”, which have entry and exit points. Consequently, each model/tool has various
parameters, serving as input parameters or output parameters, which are stored in entity
“mr_parameter”. This entity facilitates the transition from an abstract representation to a
concrete one. Logical compatibilities between connected parameters must be taken into
account along with the aspect of units, in order to avoid inconsistencies between the
connected models/tools.

 Each model/tool may be associated with a set of references, stored in the entity
“mr_reference”, which provides direct or indirect links to additional material, extending in
this way the knowledge base related to the specific model/tool.

 Every model/tool can be accompanied by a set of files. The information concerning the
aforementioned files is stored in the entity “mr_file”. The entity “mr_file” only holds the
metadata of the file and not its data. The data of the files are stored internally in a file based
repository. If a file is an implementation or a computational representation of a model/tool,
then a suitable engine is specified for running the file.

According to the aforementioned principles of the Model Repository, the Entity-Relationship (ER)
diagram of model/tool repository is presented in figure 3:

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 21 of 195

Figure 3: Entity Relationship (ER) diagram of Model and Tool Repository

As shown in figure 3, the MySQL database of the Model Repository consists of six entities (tables),
which are named “mr_tool”, “mr_parameter”, “mr_reference”, “mr_file”, “mr_property” and
“mr_reference”. The attributes (table columns) of the aforementioned entities are presented below:

Entity mr_tool

 id: Primary key. Used to uniquely identify each table row.

 title: The name of the model/tool. Each model/tool should have a unique name.

 uuid: The universally unique identifier of each model.

 description: The (short) textual description of the model/tool.

 comment: Any comment that the creator/modifier of the model/tool wants to include.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 22 of 195

 version: The version of the model/tool.

 strongly_coupled: A flag that is being used in order to characterize the model as a strongly
coupled model or as a non-strongly coupled model. Strongly coupled models are the models
that dynamically exchange information (messages) during their execution. Non-strongly
coupled models exchange information only before or after their execution. Since the strongly
coupled models depend on a multiscale coupling library and environment in order to run,
such as the Muscle 2 library, this flag has been created based on the new WP6 requirements.

 semtype: A url representing semantic information about this model.

 extra_parameters: This column holds the string that will be appended in the model’s
command line argument list. This string is consisted of flag-value pairs, it remains the same
for every simulation of this model and it is considered to be essential for each running.

 executable_path: Name of the executable (including relative path) inside the compressed
archive. The value of this column is essential in order for VPH-HF component to be able to
allocate the executable of the model.

 created_on: The date and time when this model has been created.

 created_by: The identification of the creator of this model.

 modified_on: The date and time when this model has been modified.

 modified_by: The identification of the modifier of this model.

Entity mr_parameter

 id: Primary key. Used to uniquely identify each table row.

 tool_id: The id of the model/tool that this parameter is associated with. Linked to the entity
“mr_tool”.

 name: The name of the parameter. Parameters that belong to the same model should have
unique names.

 description: The (short) textual description of what this parameter represents.

 uuid: The universally unique identifier of each parameter.

 data_type: The type of the parameter. Possible values can be number, string and file.

 unit: The units in which the parameter is represented. Only applicable if a parameter is a
number.

 data_range: The range of the parameter values separated by “-“. Only applicable if the
parameter is a number.

 flag: The flag used in the command line argument list with which this parameter is provided
through command line. Only applicable if the parameter is a static input parameter.

 default_value: The value that will be used if a parameter value is not provided to the tool.

 is_mandatory: True if this is a mandatory parameter.

 is_output: True if this parameter is an output parameter.

 is_static: True if this parameter is a static parameter. Static parameters are those
parameters that their values are being exchanged before or after the execution of the

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 23 of 195

models. Dynamic parameters are those parameters that their values are being exchanged
during the execution of the models.

 comment: Any additional comment concerning this parameter.

 semtype: A url representing semantic information about this parameter.

 created_on: The date and time when this parameter has been created.

 created_by: The identification of the creator of this parameter.

 modified_on: The date and time when this parameter has been modified.

 modified_by: The identification of the modifier of this parameter.

mr_reference

 id: Primary key. Used to uniquely identify each table row.

 tool_id: Linked to the model/tool that this resource refers to. Linked to the entity “mr_tool”.

 title: The name given to the resource.

 type: The type of the resource. Example values: “book”, “journal article”, etc.

 creator: The creator(s) of the resource (e.g. authors, etc.).

 issued: The date of formal issuance (e.g. publication) of the resource.

 bibliographic_citation: The bibliographic citation of the resource.

 is_part_of: The related resource that this resource is part of.

 source: The related resource from which the described resource is derived from.

 doi: The DOI (Digital Object Identifier) of the resource. This field is empty if the resource
doesn’t have a DOI.

mr_property

 id: Primary key. Used to uniquely identify each table row.

 name: The name of the perspective.

 description: The (short) textual description of what this property represents.

 comment: Any comment that the creator of the perspective wants to include.

 semtype: A url representing semantic information about this perspective

mr_tool_property

 id: Primary key. Used to uniquely identify each table row.

 tool_id: The id of the model/tool. Linked to the entity “mr_tool”.

 property_id: The id of the perspective. Linked to the entity mr_property.

 value: The value that the perspective takes in case of a specific model/tool.

 created_on: The date and time when the specific model has been assigned with this
perspective value.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 24 of 195

 created_by: The identification of the creator who has assigned this perspective value to a
specific model.

 modified_on: The date and time when this perspective value has been modified for a specific
model.

 modified_by: The identification of the modifier of this perspective value

mr_file

 id: Primary key. Used to uniquely identify each table row.

 tool_id: Linked to the model/tool that this file is associated with. Linked to the entity
“mr_tool”.

 title: The name of the file.

 description: The (short) textual description of what this file represents.

 kind: Defines what this file is. Example values: “document”, “source code”, “muscle
configuration file”, “t2flow”, “compressed package with binary and dependencies”, “xmml
description”.

 source: The location where this file is internally stored.

 license: The license associated with this file. It can be the name of a well-known license
(Apache, MIT, etc.) or the detailed description of the license.

 sha1sum: The sha1 checksum of this file (data). It is used in order to check the consistency of
the file.

 comment: Any additional comment.

 engine: The engine that is suitable for executing this file. Only applicable in case that the file
can be executed/run.

 created_on: The date and time when this file has been uploaded.

 created_by: The identification of the creator who has uploaded this file.

 modified_on: The date and time when this file has been changed (Actually the metadata of
this file have been changed)

 modified_by: The identification of the modifier of this file.

The entity Relationship diagram (ER) which has been depicted in figure 3, represents the design of
the relational database of the Model and Tool Repository. This design has been documented in
deliverable “D8.1: Design of the CHIC Repositories”, but during the CHIC project it has undergone
many changes based on the new requirements that came from the other work packages. Most of the
changes have been applied to the entities “mr_tool”, which is the entity that holds the basic
descriptive information of the model, and “mr_parameter”, which is the entity that holds
information about the parameter. The aforementioned changes concerning the aforementioned
entities are presented below:

 mr_tool: Four more attributes (columns) have been added to this entity.

o The “uuid” attribute which is the universally unique identifier for each model has
been added taking into account the corresponding WP7 requirement.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 25 of 195

o The “strongly_coupled” attribute which is a flag that indicates whether the model
exchanges dynamically information during its execution, or it exchanges
information only before or after its execution, has been added taking into account
the corresponding WP6 requirement for being able to store in the Model
Repository also strongly coupled models.

o The “extra_parameters” attribute which is a string that consists of flag-value pairs,
appended in the model’s command line argument list,has been added taking into
account the corresponding WP6 and WP7 requirements. Since some models always
include in their command line list some predefined constant arguments, the
storage of the aforementioned constant arguments in the relational database a
necessity.

o The “executable_path” attribute which is a string that holds the relative path of the
model executable inside the compressed archive, has been added taking into
account the corresponding WP7 requirement. The value of this attribute is
retrieved from the VPH-HF component through a web service in order to allocate
the executable of the model inside the compressed folder.

 mr_parameter: Two more attributes have been added to this entity.

o The “uuid” attribute which is the universally unique identifier for each parameter
has been added taking into account the corresponding WP7 requirement.

o The “flag” attribute, has been added taking into account the corresponding WP7
requirement. With the adoption of the “flag” attribute, the provision of input to
the models is handled through flags. Consequently the position of the argument
values in the command line argument list of the model does not play any role, since
each argument value is always accompanied and recognized by the corresponding
flag.

The schema of the relational database of the Model Repository that has been just reported in this
chapter, has been designed in order to be able to efficiently store within the CHIC platform all the
persistent data that are related to the models. Both the metadata description of the models
(parameters, perspective values, references, basic descriptive information) and the files that are
related to the models (executables, documentation, configuration files, source code) are stored in
the MySQL database of the Repository. Since the MySQL database server is the component which is
responsible for the persistent storage of the models, it is considered the most sensitive, critical and
vital part of the Model Repository. Nevertheless, the Model Repository consists of many other
components, such as the Apache Application Server, the Django Web Framework and some back-end
and front-end libraries and dependencies. Moreover some security libraries are also being used in
order to assure the conformity of the Model Repository with the CHIC legal framework and with
internationally recognized security standards. All the aforementioned components were
incorporated in order to build not just a local relational database, but a web platform fully integrated
into the CHIC platform through the corresponding web services, and also available to the users
through its user interface. Table 1 presents all the components, external libraries, applications or
dependencies that are being used in the Model Repository along with their licenses.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 26 of 195

Table 1: External components (dependencies, libraries, applications) of the Model and Tool Repository

External Component
(Dependency – Library –
Application)

License Usage

Apache HTTP Server Apache license A secure, efficient, and
extensible server that provides
HTTP services in sync with the
current HTTP standards.

MySQL community edition GPL license The relational database server
responsible for persistently
storing information related to
models.

Django Rest Framework Copyright (c) 2011-2016, Tom
Christie All rights reserved

A powerful and flexible toolkit
for building web APIs

djangosaml2 Apache2 license A Django application that
integrates the PySAML2 library
into the Model Repository
project in order to be able to
incorporate the SAML front-
end authentication
mechanism.

dm.xmlsec.binding BSD license XML security library used to
authenticate web service
requests.

XML security library MIT license A C library that supports XML
security standards (XML
signature, XML encryption,
etc.). It is being used by
djangosaml2 and
dm.xmlsec.binding.

Django BSD license The Python Web Framework
that has been used for the
development of the Model
Repository

jQuery library MIT license A javascript library which is
being used by the Model
Repository for event handling,
animation, and Ajax calls.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 27 of 195

Bootstrap framework MIT license HTML, CSS and JS framework
for developing part of the
front-end of the Model
Repository.

As shown in table 1, nine major external components are used in the Model Repository web
application. Some of these components are related to the security (djangosaml2, dm.xmlsec.binding,
XML security library), some are related to the back-end of the application (Apache HTTP Server,
MySQL Database Server, Django, Django Rest Framework) and finally some are related to the front-
end (jQuery library, Bootstrap framework).

Figure 4 depicts the system from a system engineer’s point of view. Thereafter, the topology of the
software components that have been described in table 1, as well as the physical connections
between those components are all presented in figure 4.

Figure 4: Topology of the components of the Model Repository

Based on the topology depicted in figure 4, some of the components are wrapped by the Django
Web Framework (Django Rest Framework, djangosaml2 security library, etc.) and some others have
been installed in an operating system level (XML security library, Python interpreter, MySQL driver,
etc.). Moreover, the contents of the Model Repository can be exposed through web services to other
CHIC components such as the CRAF (Clinical Research Application Framework) and the VPH-HF
(Hypermodelling Framework), or they can be exposed through the browser directly to the user. The
protection of the privacy and integrity of the exchanged data is ensured by a proxy server which
makes use of HTTPS protocol for outbound connections. This is guaranteed by a SSL certificate that
has been installed by partner CUSTODIX in the virtual machine that accommodated the proxy.
Moreover this certificate has been issued from a trusted Certificate Authority.

Even though most of the components that have been presented in table 1 have undergone some
basic configuration based on the needs of the Model Repository web application, most of the work
regarding the software development has been done through the Django web framework. The

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 28 of 195

business logic, the presentation layer, the URL dispatching, the object relational mapping and the
web services are all handled by the Django framework.

The Django framework is a free and open source web application framework, written in Python,
which follows the model-view-controller (MVC) architectural pattern. It encourages rapid
development and clean, pragmatic design. It allows high-performing, elegant Web application
building. Django’s primary goal is to ease the creation of complex, database-driven websites. Django
emphasizes reusability and “pluggability” of components, rapid development, and the principle of
don’t repeat yourself (DRY). Python is used throughout, even for settings, files and data models.

The components and their connections that reside inside the Model Repository Django application
are presented in Figure 5:

Figure 5: Components of the Model Repository Django Application

 As shown in figure 5, the Model Repository Django Application consists of the following
components:

 Object – Relational mapping (ORM): The object-relational mapping is a programming
technique for converting data between incompatible type systems in relational databases
and object-oriented programming languages. This creates, in effect, a “virtual object
database” that can be used from within the programming language.

 Data Models: The data model defines the data in Python and interacts with it.

 Views: The view component consists of many view functions. The view function performs the
requested function, which typically involves reading or writing to the Model Repository
MySQL database. It may include other tasks as well. The business logic of the application is
mostly included in this component. After performing any requested tasks, the view returns
an HTTP response object (usually after passing the data through a template) to the web

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 29 of 195

browser. Optionally, the view can save a version of the HTTP response object in the caching
system for a specific length of time.

 Templates: Templates typically return HTML pages. The Django template language offers
HTML authors a simple-to-learn syntax while providing all the power needed for
presentation logic. The Model Repository front-end static files (images) and the front-end
libraries (jQuery, Bootstrap framework) are included in the templates.

 URL Dispatcher: The URL dispatcher maps the requested URL to a view function and calls it.
If caching is enabled, the view function can check to see if a cached version of the page exists
and bypass all further steps returning the cached version instead.

4.3 The user interface of Model and Tool Repository

The principles of user interface design are intended to improve the quality of user interface design.
According to Larry Constantine and Lucy Lockwood in their usage-centered design, these principles
are [15]:

 The structure principle: Design should organize the user interface purposefully, in
meaningful and useful ways based on clear, consistent models that are apparent and
recognizable to users, putting related things together and separating unrelated things,
differentiating dissimilar things and making similar things resemble one another. The
structure principle is concerned with overall user interface architecture.

 The simplicity principle: The design should make simple, common tasks easy, communicating
clearly and simply in the user’s own language, and providing good shortcuts that are
meaningfully related to longer procedures.

 The visibility principle: The design should make all needed options and materials for a given
task visible without distracting the user with extraneous or redundant information. Good
designs don’t overwhelm users with alternatives or confuse with unneeded information.

 The feedback principle: The design should keep users informed of actions or interpretations,
changes of state or condition, and errors or exceptions that are relevant and of interest to
the user through clear, concise, and unambiguous language familiar to users.

 The tolerance principle: The design should be flexible and tolerant, reducing the cost of
mistakes and misuse by allowing undoing and redoing, while also preventing errors wherever
possible by tolerating varied inputs and sequences and by interpreting all reasonable actions.

 The reuse principle: The design should reuse internal and external components and
behaviours, maintaining consistency with purpose rather than merely arbitrary consistency,
thus reducing the need for users to rethink and remember.

The Model Repository, as well as the other CHIC Repositories, makes use of the aforementioned
principles in order to produce a user interface which makes the interaction with the user (researcher,
clinician, modeller) self-explanatory, efficient, enjoyable and user-friendly. It has been given special
emphasis during the development of the Model Repository to provide a user interface where the
user will need to provide minimal input to achieve the desired output and where the Repository will
minimize undesired outputs to the user.

Figure 6 presents the main page of the Model Repository. As shown in the aforementioned figure,
right after the authentication and authorization processes, the user is able to store a new model
through a wizard, or browse the content of the Repository in order to view or even update the
models that have been stored. The workflows for the storage of a new model and the browsing of
the content of the Repository are being described in the next chapters.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 30 of 195

Figure 6: The main page of the Model Repository

4.3.1 Wizard for storing new models

A wizard has been created for the Model and Tool Repository in order for the user to be able to store
a new model through a single page. More specifically, the user is able through this wizard to store all
the related information of the new model, including:

 Basic information of the new model (title, description, additional comments, etc.).

 Definition of the input and output parameters of the new model.

 Categorization of the new model based on the 13 Perspectives that have been designed
within CHIC [2].

 References related to the new model (journal articles, conference proceedings, etc.)

This wizard consists of five steps, and in order for the information of the new model to be valid, the
user has to:

 Provide a unique title for the new model.

 Provide unique names for all the parameters of the new model.

 Provide unique titles regarding the metadata file names. The actual names of the files that
belong to the same model should also be unique.

 Provide unique titles for all the references of the new model.

It should be noted that the user is able to skip the 2 last steps of this wizard for later. More
specifically, since the definition of the references of the model and the information about the
categorization are not so critical for the execution of the model, the aforementioned steps could be
skipped.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 31 of 195

The screenshots of the different steps regarding the aforementioned wizard are presented in Figures
7-11.

Figure 7: The first step of the wizard. The user provides the basic information of the new model (title,
description, etc.)

Figure 8: The second step of the wizard. The user provides information regarding the parameters of the new
model (title, description, units, data range, etc.)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 32 of 195

Figure 9: The third step of the wizard. The user uploads files related to the new model (source code,
executables, documentation, etc.)

Figure 10: The fourth step of the wizard. The user categorizes the new model based on the 13 Perspectives
that have been defined within CHIC

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 33 of 195

Figure 11: The fifth step of the wizard: The user provides information about the references that are related
to the new model (journal articles, conference proceedings, etc.)

As shown in figures 7-11, all the information regarding the new model can be provided through a
single page which consists of different tabs (one tab for each wizard step). After the provision of all
the data of the new model, the corresponding information will be stored in the MySQL database of
the Model Repository. The information related to the categorization of the new model will be stored
both in the relational MySQL database and to the CHIC triplestore in the form of triples, as described
in chapter 4.5. As shown in figure 12, in case of invalidity concerning the input data of the user, the
Model Repository notifies the user accordingly with error messages in the corresponding tabs of the
page.

Figure 12: The wizard informs the user about the invalidity of the data when submitting the form

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 34 of 195

4.3.2 Browsing and filtering the content of Model and Tool Repository

Apart from the wizard that has been developed in order to facilitate the storing procedure of a new
model, the user is also able through the Model Repository to browse or even update the available
models and their related information (parameters, categorization, references, files, etc.). Based on
the feedback received mainly from some modelling partners (WP6), the user interface of the Model
Repository has been improved and now the user is able to view the content of the Repository in a
more elegant way. In addition to the advance concerning the graphics and the illustration of the
corresponding web pages, the new design aims to facilitate the interactions between the Repository
and the user in a way that common tasks and activities can be accomplished easily and efficiently.
For instance, if required, the user is able to view in the same page all the information related to a
specific model (parameters, categorization, etc.). Moreover, since the filtering of the models based
on their categorization is now feasible through the Repository, the user can easily and instantly view
the models of his choice without browsing the full content of the database.

A screenshot of the content of the Model Repository is presented in figure 13. As shown in the
aforementioned figure, the available models are rendered by using tables and panels. The basic
information of each model (unique identifier, name of the executable, description, etc.) is available in
the corresponding table and pagination is being used in order to browse all the models. As shown in
the screenshot of figure 13, the Model Repository displays the descriptive information of the models
named Wilms Oncosimulator, Nephroblastoma phenomenological hypermodel and Lung
Oncosimulator. Detailed information concerning the aforementioned models can be found in the
deliverable D6.3 “Initial Standardized Cancer Hypermodels” [30].

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 35 of 195

Figure 13: A screenshot of part of the content of the Model Repository

Apart from browsing the available models, the user is also able through the same page to perform
some actions on the desired model. For instance, they are able to delete the model, view the
parameters of the model, view the categorization of the model, update the parameters, etc. Figure
14 presents all the available actions that can be applied to a model, after pressing the button
“Choose action for this model”, and figure 15 presents how information related to the parameters of
the model named “Vasculature Model” can be rendered in the same screen after the corresponding
user request. Just like the parameters of a model, different types of information (Perspective values,
files, model basic description, etc.) may be displayed below the table of the model.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 36 of 195

Figure 14: The user can apply many actions to a model (view the parameters, view the files, etc.)

Figure 15: The parameters of the model named "UOXFL: Vasculature Model" are being displayed below the
model, after the corresponding user request

In addition to the depiction of the database content in a user-friendly way, the Model Repository also
facilitates the updating process of the information related to models. This workflow is depicted in
figures 16 and 17. More specifically, as shown in figure 16, the user is able to update a parameter of
a model by pressing the button “Update this parameter”, and as a result they will be redirected to
the corresponding submission page, which is depicted in figure 17. Of course, the exact same
procedure can be applied for the updating of the information related to Perspective values,
references, files, etc.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 37 of 195

Figure 16: The user is going to update the parameter "cell_cycle_time" which belongs to the model "Lung
Oncosimulator"

Figure 17: The user is redirected to a submission page, in order to update the information related to the
parameter "cell_cycle_time"

Finally, since the number of the available models stored in the Model Repository may span from tens
to thousands, the filtering of the models is a necessity. In respect to this, figure 18 presents a
screenshot of the page related to the filtering of the models based on their categorization. As
described in the deliverable “D6.2: CHIC Cancer Component Models: Initial Tested Versions”, the
aforementioned categorization constitutes a metamodeling description of the corresponding model
based on the CHIC 13 perspective approach. As shown in 18, the filtering of the models is based on
the different categories selected by the user for each Perspective. For instance, the selection of the
category “atomic” for Perspective II will result in displaying only the models whose spatial scale of
the manifestation of life is of kind atomic.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 38 of 195

Figure 18: The user is able to filter the available models based on their categorization and their Perspective
values

4.4 Model and Tool Repository web services

The Model and Tool Repository makes use of RESTful web services which are based on the entity
relationship diagram depicted in figure 3 (chapter 3.2). The web services of the Model Repository are
mainly based on the interfaces described in deliverable “D10.2 – Design of the orchestration
platform, related components and interfaces”. This chapter aims at presenting all the necessary
information which is essential in order for the client to access the model/tool repository’s web
services. The description of the web service, the HTTP method used, the parameters of the service,
the URL and the returned object of the service are all described in the following tables. Each table is
related to a specific RESTful web service. Even though the documentation of most of these web
services has already been presented in “D8.3: Implementation of the interfaces of the CHIC
Repositories”, it has been decided to also include them in this deliverable, since this document is
considered to be the final report of the CHIC repositories. Moreover, this chapter incorporates all the
changes and the updates that took place regarding the Model Repository web services, since the
submission of the deliverable D8.3. The most significant change that took place is the replacement of
external IP of the Model Repository (139.91.210.27) with the domain name “mr.chic-vph.eu” that
has been reserved from partner Eurice. It must be noted that the progress of the CHIC project, the
evolution of its individual components as well as the eventual overall expansion of the CHIC platform
may pose new requirements for the creation of supplementary web services that will make the
Model Repository more comprehensive.

Model/Tool

The following web services (tables 2 - 7) should be used whenever the client needs to store,
retrieve or delete descriptive information (title, description, comments) of the model/tool.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 39 of 195

Table 2: Information for calling storeTool web service

storeTool

Description This method stores the basic descriptive information of the
model/tool and returns the id

URL https://mr.chic-vph.eu/model_app/storeTool

Encoding application/x-www-form-urlencoded

HTTP Method POST

Parameters passed through
request body

title= Required - Title of the
model/tool

description= Not required – Description of
the model/tool

comment= Not required – Comments on
the model/tool

version= Required – version of the
model/tool (version should be
in the format X.X where X is an
integer)

semtype= Not required – url representing
semantic information about this
model/tool

extra_parameters= Not required – string consisted
of flag-value pairs that should
be included in the command
line argument list of the model

executable_path= Not required – The relative path
of the executable inside the
compressed package

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code If no SAML token inside HTTP header

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 40 of 195

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Example Response

The JSON object returned by method storeTool has one key, named id, and one value which is
associated with this key.

Table 3: Information for calling getAllTools web service

getAllTools

Description This method returns all the models/tools and the corresponding
descriptive information stored (id, uuid, title, description,
comment, version, semtype, executable_path, extra_parameters,
strongly_coupled). It returns null when no model/tool stored in the
repository.

URL https://mr.chic-vph.eu/model_app/getAllTools

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameters No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 41 of 195

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTools are as many as the different
models/tools stored in the model/tool repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of mr_tool entity (see figure 3) and each value of this nested object represents the
information of the corresponding column

Table 4: Information for calling getToolById web service

getToolById

Description This method returns the descriptive information stored under the
id (uuid, title, description, comment, version, semtype,
strongly_coupled, executable_path, extra_parameters) and null
when not existing

URL https://mr.chic-vph.eu/model_app/getToolById

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – Id of the model/tool

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 42 of 195

Json Response

The JSON object returned by method getToolById has thirteen keys named title, uuid, description,
comment, version, strongly_coupled, extra_parameters, executable_path, semtype, created_on,
created_by, modified_on and modified_by, and thirteen values associated with those keys.

Table 5: Information for calling getToolByParameterId web service

getToolByParameterId

Description This method returns the descriptive information of the model/tool
(mr_tool table) to which the given parameter belongs.

URL https://mr.chic-vph.eu/model_app/getToolByParameterId

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the given
parameter

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getToolByParameterId has fourteen keys named id, uuid, title,
description, comment, version, strongly_coupled, extra_parameters, executable_path, semtype,
created_on, created_by, modified_on and modified_by, and fourteen values associated with those

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 43 of 195

keys.

Table 6: Information for calling getToolByUuid web service

getToolByUuid

Description This method returns the descriptive information stored under the
uuid (id, title, description, comment, version, semtype,
strongly_coupled, executable_path, extra_parameters) and null
when not existing

URL https://mr.chic-vph.eu/model_app/getToolByUuid

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

uuid= Required – uuid of the
model/tool

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getToolByUuid has thirteen keys named id, title, description,
comment, version, strongly_coupled, extra_parameters, executable_path, semtype, created_on,
created_by, modified_on and modified_by, and thirteen values associated with those keys.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 44 of 195

Table 7: Information for calling deleteToolById web service

deleteToolById

Description This method deletes the descriptive information, the files, the
parameters, and property values of a model/tool.

URL https://mr.chic-vph.eu/model_app/deleteToolById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – id of model/tool

Returns 200 OK if model/tool has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Parameter

The following web services (tables 8-13) should be used whenever the client needs to store,
retrieve or delete information related to parameters (name, description, data_type, data_range,
etc.).

Table 8: Information for calling storeParameter web service

storeParameter

Description This method stores the parameter information of a tool and
returns the id

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 45 of 195

URL https://mr.chic-vph.eu/model_app/storeParameter

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required - id of the tool to which
the parameter belongs

name= Required – name of the
parameter

description= Not Required – description of
the parameter

data_type= Required – the type of the
parameter (number, string, file)

unit= Not Required – the units in
which the parameter is
represented (only applicable if
the parameter is a number)

data_range= Required – Data range of the
parameter

 Discrete values example:
value1,value2,value3

 Min value example: 3-

 Max value example: -10

 Min max values
example: 3-5

default_value= Required – the value that will be
used if a parameter value is not
provided to the tool

is_mandatory= Required – 1 if the parameter is
mandatory, 0 if it is optional

is_output= Required – 1 if the parameter is
output, 0 if it is input

is_static= Required – 1if the parameter is

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 46 of 195

static, 0 if it is dynamic

comment= Not Required – comments on the
parameter

semtype= Not required – url representing
semantic information about this
parameter

flag= Not required – the flag which
accompanies the parameter in
the command line argument list

Returns 200 OK & JSON object *

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeParameter has one key, named id, and one value which is
associated with this key.

Table 9: Information for calling deleteParameter web service

deleteParameter

Description This method deletes a certain parameter

URL https://mr.chic-vph.eu/model_app/deleteParameter

Encoding application/x-www-form-urlencoded

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 47 of 195

HTTP method Delete

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the parameter

Returns 200 OK if parameter has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 10: Information for calling getParametersByToolId web service

getParametersByToolId

Description This method returns the information of all the parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter

tool_id= Required – the id of the tool to
which the parameters belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 48 of 195

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getParametersByToolId are as many as the different
parameters belonging to the tool. Each value associated with a specific key is represented by a
nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the mr_parameter entity (see figure 3) and each value of the nested JSON object represents
the information of the corresponding column.

getParameterById

Description This method returns the descriptive information of the parameter
stored under the given id (mr_parameter table).

URL https://mr.chic-vph.eu/model_app/getParameterById

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the given
parameter

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 49 of 195

encoded compressed SAML
token>

Json Response

The Json object returned by method getParameterById has eighteen keys named tool, name,
description, data_type, unit, flag, uuid, data_range, default_value, is_mandatory, is_output, is_static,
comment, semtype, created_on, created_by, modified_on, modified_by and eighteen values
associated with those keys.

Table 11: Information for calling getMandatoryParametersByToolId web service

getMandatoryParametersByToolId

Description This method returns the information of the mandatory parameters of
a given tool

URL https://mr.chic-
vph.eu/model_app/getMandatoryParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through
the URL – query string
parameter

tool_id= Required - the id of the tool to
which the mandatory parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 50 of 195

Json Response

The keys of the JSON object returned by method getMandatoryParametersByToolId are as many as
the different mandatory parameters belonging to the tool. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the mr_parameter entity (see figure 3) and each value of the nested
JSON object represents the information of the corresponding column.

Table 12: Information for calling getInputParametersByToolId web service

getInputParametersByToolId

Description This method returns the information of the input parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getInputParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter

tool_id= Required – the id of the tool to
which the input parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getInputParametersByToolId are as many as the
different input parameters belonging to the tool. Each value associated with a specific key is

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 51 of 195

represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_parameter entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

Table 13: Information for calling getOutputParametersByToolId web service

getOutputParametersByToolId

Description This method returns the information of the output parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getOutputParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter

tool_id= Required – the id of the tool to
which the output parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getOutputParametersByToolId are as many as the
different output parameters belonging to the tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_parameter entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 52 of 195

Property

The following web services (tables 14-20) should be used whenever the client needs to store,
retrieve or delete information related to properties (perspectives) (property name, property value,
property description, property comments).

Table 14: Information for calling storeProperty web service

storeProperty

Description This method stores the basic descriptive information of a property
(perspective) and returns the id

URL https://mr.chic-vph.eu/model_app/storeProperty

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

name= Required – the name of the
property

description= Not required – description of
the property

comment= Not required – comments on
the property

 semtype= Not required – url representing
semantic information about this
property

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 53 of 195

Json Response

The JSON object returned by method storeProperty has one key, named id, and one value which is
associated with this key.

Table 15: Information for calling getAllProperties web service

getAllProperties

Description This method returns all the properties (perspectives) and the
corresponding descriptive information stored (id, name,
description, comment, semtype)

URL https://mr.chic-vph.eu/model_app/getAllProperties

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllProperties are as many as the different
properties (perspectives) stored in the model/tool repository. Each value associated with a specific
key is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the mr_property entity (see figure 3) and each value of the nested
JSON object represents the information of the corresponding column.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 54 of 195

Table 16: Information for calling getPropertyById web service

getPropertyById

Description This method returns the descriptive information stored under the
property (perspective) id (name, description, comment)

URL https://mr.chic-vph.eu/model_app/getPropertyById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the
property

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getPropertyById has four keys named name, description,
comment, semtype, and four values associated with those keys.

Table 17: Information for calling storePropertyValue web service

storePropertyValue

Description This method stores the value of a property for a tool and returns

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 55 of 195

the id

URL https://mr.chic-vph.eu/model_app/storePropertyValue

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool

property_id= Required – the id of the
property

value= Required – the value of the
property

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storePropertyValue has one key, named id, and one value
which is associated with this key.

Table 18: Information for calling deletePropertyValue web service

deletePropertyValue

Description This method deletes the property value for a certain tool

URL https://mr.chic-vph.eu/model_app/deletePropertyValue

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 56 of 195

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the record
which holds the property value

Returns 200 OK if property value has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 19: Information for calling getPropertyValuesByToolId web service

getPropertyValuesByToolId

Description This method retrieves all the property (perspective) – value pairs for
a given tool

URL https://mr.chic-vph.eu/model_app/getPropertyValuesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the property – value
pairs are associated

Returns 200 OK & JSON object

400 http status code if bad request

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 57 of 195

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getPropertyValuesByToolId are as many as the
different properties (perspectives) that describe or/and classify the given tool. Each value associated
with a specific key is represented by a nested JSON object. The keys of the aforementioned nested
JSON object are named name, description, comment, value, semtype.

Table 20: Information for calling deletePropertyById web service

deletePropertyById

Description This method deletes the property (perspective) which is associated
with the given id and the corresponding values

URL https://mr.chic-vph.eu/model_app/deletePropertyById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the record
which holds property’s
descriptive information

Returns 200 OK if property has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 58 of 195

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Reference

The following web services (tables 21-23) should be used whenever the client needs to store,
retrieve or delete information related to references (reference title, reference authors, reference
type, etc.).

Table 21: Information for calling storeReference web service

storeReference

Description This method stores information of the reference. The reference
should be associated with a model/tool.

URL https://mr.chic-vph.eu/model_app/storeReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool
with which the reference is
associated

title= Required – the title of the
reference

type= Required – the type of the
reference (book, journal article,
etc.)

creator= Required – the creator(s) of the
resource

issued= Required - the date of formal
issuance

bibliographic_citation= Not required – the bibliographic

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 59 of 195

citation of the resource

is_part_of= Not required – the related
resource that this resource is
part of

source= Not required – the related
resource from which the
described resource is derived
from

 doi= Not required – digital object
identifier of the resource

 pmid= Not required – the pubmed
identifier

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeReference has one key, named id, and one value which is
associated with this key.

Table 22: Information for calling deleteReferenceById web service

deleteReferenceById

Description This method deletes a specific reference

URL https://mr.chic-vph.eu/model_app/deleteReferenceById

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 60 of 195

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
reference

Returns 200 OK if reference has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 23: Information for calling getReferencesByToolId web service

getReferencesByToolId

Description This method returns all the references of a given tool

URL https://mr.chic-vph.eu/model_app/getReferencesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the references are
associated

Returns 200 OK & JSON object

400 http status code if bad request

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 61 of 195

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

token>

Json Response

The keys of the JSON object returned by method getReferencesByToolId are as many as the different
references which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_reference entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

File

The following web services (tables 24-29) should be used whenever the client needs to store,
retrieve or delete information related to files (title of file, description of file, the file itself, etc.).

Table 24: Information for calling storeFile web service

storeFile

Description This method stores the file information and returns the id

URL https://mr.chic-vph.eu/model_app/storeFile

Encoding Multipart/form-data

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool
with which the file is associated

title= Required – the title of the file

description= Not required – description of
the file

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 62 of 195

kind= Not required – defines what this
file is (document, source code,
binary, etc.)

license= Not required – the license
associated with this file

Sha1sum= Not required – the sha1
checksum of the file

comment= Not required – comments on
the file

engine= Not required – the engine that
is suitable for executing this file

file= Required – the actual file (blob)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeFile has one key, named id, and one value which is
associated with this key.

Table 25: Information for calling deleteFile web service

deleteFile

Description This method deletes a certain file

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 63 of 195

URL https://mr.chic-vph.eu/model_app/deleteFile

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns 200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 26: Information for calling getFileById web service

getFileById

Description This method returns the given file (attachment)

URL https://mr.chic-vph.eu/model_app/getFileById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns 200 OK & attachment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 64 of 195

(Content-Type:
application/force-download

Content-Disposition:
attachment)

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 27: Information for calling getPackageByToolId web service

getPackageByToolId

Description This method returns the file (attachment) which is of kind
"compressed package with binary and dependencies" and belongs
to the model with id=tool_id. This method returns 200 O.K. +
attachment.

URL https://mr.chic-vph.eu/model_app/getPackageByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

tool_id= Required – the id of the
model/tool to which the
“compressed package with
binary and dependencies"
belongs

Returns

(Content-Type:
application/force-download

Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 65 of 195

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 28: Information for calling getFilesOfKind web service

getFilesOfKind

Description This method returns the information of all the files of a specific
kind of a given tool

URL https://mr.chic-vph.eu/model_app/getFilesOfKind

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool

kind= Required - kind of file
(document, source code, binary,
etc.)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getFilesOfKind are as many as the different files of a
specific kind which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_file entity (see figure 3) and each value of the nested JSON object

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 66 of 195

represents the information of the corresponding column.

Table 29: Information for calling getFilesByToolId web service

getFilesByToolId

Description This method returns information (only metadata, not attachment)
for all the files that are associated with the given model/tool.

URL https://mr.chic-vph.eu/model_app/getFilesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the files are
associated

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getFilesByToolId are as many as the different files
that are associated with the given model/tool. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, title, description, kind, source, license, sha1sum, comment, engine, created_on, created_by,
modified_on, modified_by and 13 values associated with those keys.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 67 of 195

4.5 Integration of Model and Tool Repository with CHIC triplestore

As discussed in chapter 4.2 “Architecture of Model and Tool Repository”, the Model Repository
makes use of a MySQL relational database for the persistent storage of information related to
models. Even though there are many reasons for using a relational database, some of the meta-
information related to models and tools will be converted to RDF triples so as to be stored in the
CHIC triplestore. RDF triples can be applied equally to all structured, semi-structured and
unstructured content. By defining new types and predicates, it is possible to create more expressive
vocabularies within RDF in order to describe information related to models. This expressiveness
enables RDF to define controlled vocabularies with exact semantics. Furthermore, triplestores have
the ability to ingest diverse data, providing flexibility with respect to schema changes and mappings.
They also allow for greater freedom, efficient handling of powerful queries and serving unforeseen
information needs. Moreover, they employ intelligent data management solutions which combine
full text search with graph analytics and logical reasoning to produce deep, rich results. The cost for
data integration, management and query definition is much lower than other approaches. It must be
also noted that these databases (also known as RDF, OWL, or Graph databases) are now widely used
to manage unstructured and structured data in media and publishing, life sciences and financial
services.

Consequently, the Model and Tool repository has been updated in order to be able to automatically
store into the CHIC RDF triplestore, information related to the categorization of the models. As
stated in the Deliverable 6.1 “Cancer hypomodelling and hypermodelling strategies and initial
component models”, mathematical and computational cancer models can be categorized depending
on the perspective from which they are viewed in the basic science context. The definition of the
thirteen perspectives and their indicative values is included in the aforementioned deliverable.
Consequently, the Model and Tool repository and the CHIC semantics infrastructure make use of a
common RDF mapping configuration file so as to produce a model (a set of RDF triples) based on the
already locally stored relational data. The aforementioned configuration file maps some of the Model
Repository’s database tables and columns to CHIC RDF vocabularies and OWL ontologies. This
mapping defines the virtual RDF graph that contains some of the information from the Model and
Tool repository’s MySQL database which is related to the categorization of the models. With this kind
of integration between the Model Repository and the CHIC triplestore, the user is able to categorize
their model by visiting only a single CHIC component. After the submission of the user’s data, it is the
Model Repository’s responsibility to store the information related to the categorization of the model
both to the repository’s relational database and to the CHIC triplestore. The page where the user
categorizes their model is shown in figure 19.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 68 of 195

Figure 19: The web page where the user categorizes their model

As shown in figure 19, the user categorizes the model “ICCS Wilms Oncosimulator” for perspective V,
named “Tumour type(s) addressed”. Since the “ICCS Wilms Oncosimulator” is an integrated cancer
treatment support system modelling the growth of nephroblastoma tumours, the user checks the
box “nephroblastoma”. After pushing the button “Categorize the chosen model”, all the
corresponding information of this categorization is going to be stored both in the Model Repository
and the CHIC semantics infrastructure. The topology of the CHIC components that handle the
semantic annotation of the categorization of the models based on the 13 perspectives that have
been defined within CHIC, is shown in figure 20.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 69 of 195

Figure 20: Topology of the CHIC components that handle the semantic annotation of the models

As shown in figure 20, the following modules are used for the use case of the semantic annotation of
the models categorization:

 Controller: The controller is the central module of the model repository that consists of

many other submodules. It opens the local relational database connection and it handles

web requests and presentation details that the user will see. It also calls the Loader module.

 Loader: The Loader is in charge of converting MySQL data into RDF property values that will

be provided to the CHIC semantics infrastructure web services. It also loads the RDF mapping

configuration file and calls the application programming interfaces of the CHIC metadata

store.

 RDF mapping configuration file: This file includes the necessary information for mapping

MySQL table and columns of the CHIC model repository to RDF properties, vocabularies and

OWL ontologies of the CHIC metadata store.

 API: This module consists of all the web annotation services that are exposed from the CHIC

metadata store and are being used, among others, for the semantic annotation of the

models’ categorization.

Table 30 presents the result of the semantic annotation of the categorization of the model named
“ICCS Wilms Oncosimulator” for perspective V, in the form of subject-predicate-object expressions.
The subject denotes the resource, and the predicate denotes traits or aspects of the resource and
expresses a relationship between the subject and the object. The RDF statements that are included in
table 30 represent the following knowledge base:

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 70 of 195

 The CHIC resource with the URI https://mr.chic-vph.eu/metadata#04e3c5aa-ad45-11e5-
bd32-fa163e092aac, represents a CHIC hypomodel.

 The aforementoned CHIC hypomodel has the name “ICCS Wilms Oncosimulator”

 The aforementioned CHIC hypomodel has the unique identifier "04e3c5aa-ad45-11e5-bd32-
fa163e092aac"

 The aforementioned CHIC hypomodel addresses the tumour type named “Nephroblastoma”.
As stated in the fifth row and third column of Table 30, the “Nephroblastoma” term has the
URI “http://purl.obolibrary.org/obo/HP_0002667“ which has been derived from the human
phenotype ontology.

Table 30: The RDF statements that represent the semantic annotation of the categorization of the model
named ”ICCS Wilms Oncosimulator” for perspective V

Subject Predicate Object

<https://mr.chic-
vph.eu/metadata#04e
3c5aa-ad45-11e5-
bd32-fa163e092aac>

<http://www.chic-
vph.eu/ontologies/resource#hasC
HICuuid>

"04e3c5aa-ad45-11e5-bd32-
fa163e092aac"

<https://mr.chic-
vph.eu/metadata#04e
3c5aa-ad45-11e5-
bd32-fa163e092aac>

<http://www.w3.org/1999/02/22-
rdf-syntax-ns#type>

<http://www.chic-
vph.eu/ontologies/resource#Model-
ChicHypomodel>

<https://mr.chic-
vph.eu/metadata#04e
3c5aa-ad45-11e5-
bd32-fa163e092aac>

<http://www.chic-
vph.eu/ontologies/resource#hasN
ame>

"ICCS Wilms Oncosimulator"

<https://mr.chic-
vph.eu/metadata#04e
3c5aa-ad45-11e5-
bd32-fa163e092aac>

<http://www.chic-
vph.eu/ontologies/resource#hasP
ositionIn-5>

<http://purl.obolibrary.org/obo/HP_
0002667>

The semantic knowledge base that has been described in table 30, has been produced from the
Model Repository and has been stored in the CHIC triplestore in order for the other CHIC client
components, like the editor or the CRAF (Clinical Research Application Framework), to be able to
recognize the model named “ICCS: Wilms Oncosimulator” as a model that simulates the growth of
nephroblastoma tumour, and more specifically, according to the human phenotype ontology, the
growth of the neoplasm of the kidney that primarily affects children.

The same procedure can be applied for the semantic annotation of the categorization of any new
model, through the model repository. Nonetheless, since new CHIC RDF vocabularies and OWL
ontologies may be incorporated in the future in order to represent new perspective values, the

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 71 of 195

upgrade and the maintenance of the Model Repository and the CHIC semantics infrastructure is
essential in order to ensure the correct mapping between the Model Repository’s relational database
and the CHIC RDF schema.

4.6 The Model Repository publishes events to other CHIC components
through AMQP Protocol

The Model Repository web services that have been presented in chapter 4.4 can be invoked over the
HTTP protocol by the other CHIC components in order for the Repository content to be accessible by
them. But the aforementioned web services are not the only way of interaction between the Model
Repository and the other CHIC components. Apart from waiting for client requests, the Model
Repository publishes events to the other CHIC components whenever its content changes. Since the
modification of the Model Repository database may have a huge impact on the workflows and the
processes of the other CHIC components (Hypermodelling Editor, CRAF, VPH-HF), it has been decided
to always publish events related to Model Repository database changes.

For this communication, the Model Repository makes use of “Pika”, which is a pure-Python
implementation of the AMQP protocol (Advanced Message Queuing Protocol). The AMQP protocol
developed by the oasis open standards consortium, provides a platform-agnostic method for
ensuring information is safely transported between applications, among organizations, within mobile
infrastructures, and across the Cloud. AMQP is used in areas as varied as financial, front-office
trading, ocean observation, transportation, smart-grid, computer-generated animation and online
gaming. Many operating systems include AMQP implementations, and many application frameworks
are AMQP-aware. AMQP can also be embedded in virtualization infrastructure [14].

In order for the CHIC components to asynchronously connect to each other through the AMQP
protocol, CHIC makes use of RabbitMQ. With RabbitMQ, messages in CHIC are routed through
exchanges before arriving at queues. In order for the Model Repository to interact with RabbitMQ,
Pika library provides a wrapper which implements the methods and behaviors for an AMQP Channel.
After the construction of the channel, the Model Repository publishes to the channel with the given
“exchange”, “routing_key” and “body”. The “exchange” should specify the name of the exchange
that the message was originally published to, the routing_key is used for routing messages
depending on the exchange configuration and finally, the “body” should specify the body of the
message. Table 31 presents the “exchange”,”routing_key” and “body” values for every event that is
published whenever the content of the Model Repository changes.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 72 of 195

Table 31: Exchange, Routing Key and Body values for events published by the Model Repository

Repository Change Exchange Value Rouring Key Body

Addition of new
model/tool

“mr” “models.new” uuid of the new
model/tool

Addition/change/deletion
of model/tool parameter

“mr” “models.changed” uuid of the model to
which the parameter
belongs

Addition/change/deletion
of model/tool reference

“mr” “models.changed” uuid of the model to
which the reference is
linked

Addition/deletion of
model/tool file

“mr” “models.changed” uuid of the model to
which the file belongs

Addition/change/deletion
of model perspective
value

“mr” “models.changed” uuid of the model with
which the given
perspective is
associated

Deletion of model/tool “mr” “models.deleted” uuid of the model that
has been deleted

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 73 of 195

5 The Clinical data Repository

5.1 Introduction

The clinical data repository will permanently host all the medical data produced or collected by the
CHIC project. The data provided by the clinical environment will pass through de-identification and
(pseudo)-anonymization processes, as described in the following chapter. Additionally, interfaces
that will allow to import and export the contents of the clinical data repository will be developed. In
this way the data can be sustained after the expiration of the project’s lifetime and reused and
exploited continuously within the limits allowed by the legal framework of the project. The export
services that will be created will also assist in this direction, as many of the data sets to be gathered
by the CHIC project will be reusable by future projects. The clinical data repository will contain for
each patient all the relevant medical data including imaging data, clinical data, histological data and
genetic data.

5.2 Data flow and interaction

The intention of the data flow described (Figure 21) is to limit the additional workload on the clinical
side, while providing all the relevant information with the data. The trial data collection on the
clinical side is not covered. Once the data is uploaded to the CHIC infrastructure it must be
impossible to know the origin of the data nor any of the patient information without being
authorized to translate the used pseudonyms by the TTP. A good example for this workflow is a
cryptographic hash function. A cryptographic hash function is considered practically impossible to
invert if only the hash value is known. However, the same input data will result always in the same
hash code. This one-way concept can be applied to the general workflow for data upload in the CHIC
context.

With this concept in mind, it is straightforward to understand the problems and limitations of the
data upload pipeline. A critical requirement to meet is to keep track of the patient throughout the
anonymization process. Therefore, it is necessary that the same pseudonym is used for the same
patient across different file formats. A unique patient identifier will ensure that the repository
receiving the data is able to keep the links between datasets obtained from the same patient, even if
the data are uploaded at different time points. The information is critical for the CHIC platform, since
the (hyper)models and the other services rely on all the information collected on each individual
patient. Another important aspect is the fact that datasets cannot be properly annotated once
uploaded to the CHIC infrastructure, because the data uploader does not know where the dataset is
actually stored. Due to the pseudonymization requirement, it is necessary to perform the annotation
prior to data upload and to transfer this information together with the data file.

Therefore, the system must find a compromise between the requirements associated to the data
protection, limited time available by the clinician to process the data and the information necessary
to run the in silico trials in the CHIC infrastructure. The analysis of these constraints resulted in the
following proposition for the data upload workflow:

 A special trial-patient-identifier will be used across all the datasets collected on each patient.

 The datasets will be annotated before upload in a way that ensures a reliable extraction of
the meta-information by the repositories.

 The semantic annotations will be stored in a triplestore (providing generalized search
functionalities) only after retrieval of the meta information by the clinical data repository.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 74 of 195

The general workflow for data upload involves 6 distinct parties which are briefly described in Table
32 and the general workflow is illustrated in Figure 21.

Figure 21: The general workflow for data upload

The steps required to store clinical data in the CHIC environment, including the related semantic
annotation is the following:

1. The trial partner enters the patient in the trial center which generates the special trial-
patient-identifier.

2. The trial partner provides the data to the trial center.

a. The trial partner enters the clinical study data available in raw format into the tool
provided by the trial center (e.g. ObTiMA).

b. The trial partner provides the imaging data to the trial center.

c. The trial partner provides the genetic data to the trial center.

3. The trial center makes sure that the trial-patient-identifier is used accordingly.

a. The trial center exports the study data in standardized format (e.g. ObTiMA to CDISC
ODM).

b. The trial center adds the trial-patient-identifier to the imaging data and creates the
annotation file.

c. The trial center adds the trial-patient-identifier to the genetic data and creates the
annotation file.

4. The trial center creates the special file containing annotations and other metadata.

5. The trial center imports the data in the upload tool.

6. The upload tool applies the first pseudonymization round.

7. The upload tool uploads the data to the trusted third party.

8. The trusted third party applies the second pseudonymization round.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 75 of 195

9. The trusted third party uploads the data to the data repository.

10. The data repository extracts the annotations and provides them to the triplestore.

Table 32: Parties involved in the general workflow for data upload

Party Description

Trial Partner The trial partner conducts the clinical trial and gathers all data to
be stored in the CHIC infrastructure.

Trial Center The trial center coordinates the clinical trial and ensures that the
unique trial-patient-identifier is used across all supported file
formats accordingly.

Data Manager The data manager is responsible to upload compliant data provided
by the trial center to the trusted third party after a first
pseudonymization round.

Trusted Third Party The trusted third party accepts data uploaded by the data manager
and uploads it to the data repository after a second
pseudonymization round.

Data Repository The data repository stores clinical, imaging and genetic data.
Related data is linked and annotated with ontology terms.

RICORDO RICRODO provides services to search ontology terms, to store
annotation triples, to conduct semantically driven search queries
and to perform automated semantic reasoning.

5.3 Data types and standards

In order to provide efficient anonymization/pseudonymization of the data, standard file format
should be used. This standardization is also important to enable proper extraction of the metadata
information from the files by the clinical data repository and storage of this information in searchable
tables. In deliverable “D8.1 – Design of the CHIC repositories” most data types were already briefly
described. In Table 33 the various types of clinical data are listed in combination with the standard
file format used during the general workflow for data upload. The agreement on the file format used
for data exchange clinical information will simplify the development process for all involved parties.

Table 33: Data types and standards

Data type Standard

Clinical data (pathological and also outcome) CDISC ODM

Imaging data (post-processed, segmented, etc.) DICOM, MetaImage, Nifti, Analyze

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 76 of 195

Genetic / Molecular data MINiML

For better understanding it is also important to know, where the data comes from. In Table 34 the
different sources of the data types are listed. This insight is especially useful for parties not involved
in the workflow prior to the data upload.

Table 34: The different sources of the data types

Data type Source

Clinical data ObTiMA (ontology-based clinical trial management system)

Imaging data Local PACS (Picture Archiving and Communication System)

Genetic / Molecular data Platform specific (e.g. Affymetrix) files as generated by the
appropriate equipment.

5.4 General Concepts

The clinical data repository is built around the concept of data objects (ObjectVersion), which
constitute the basic component of the system. These data objects can be any type of image file,
processed data, study data etc. This approach provides a large flexibility to the system in terms of
data formats, data organization and data exchange [5].

The system has been designed to support versioning. Data uploaded to the system are never deleted,
but multiple versions of an object can be stored in the database. This approach limits problems
associated with accidental deletion of data, while maintaining the flexibility to keep updating data
files. For example, the initial data of the clinical study concerning a patient can be uploaded before
the final examinations. Once the last examination has been performed, a new version of the file is
uploaded to the system, which enables modellers to have access to the latest information while
keeping the ability to see the history of the modifications.

5.4.1 Linking

Each new dataset can be linked with any object already present in the repository. For example
anatomical structures can be segmented out of one or multiple medical images. Linking mechanisms
ensure that an uploaded segmentation file is not only associated with the correct patient’s data, but
also that the original images used to perform the segmentation task can be identified by the users of
the system. In the case of multimodal image segmentation, this implies that multiple links are
created to relate the segmentation file with each of the multi-modal original images. If available, the
system makes use of the meta-information stored in the files to automatically generate this linking.
Manual linking is supported as well.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 77 of 195

Figure 22: Example of the linking to relate data objects in the clinical data repository for a multi-modal brain
segmentation. In this case, four different MRI image datasets are used for the segmentation of brain
tumours

5.4.2 Annotation and Search

In addition to the imaging and clinical data, each data object can be annotated with multiple
ontology terms. Initial investigations have been made to integrate an anatomical ontology; the
Foundational Model of Anatomy (FMA) [6]. The FMA is a symbolic representation of the canonical,
phenotypic structure of an organism; a spatial-structural ontology of anatomical entities and
relations which form the physical organization of an organism at all salient levels of granularity. The
ontology relies on a triplestore storage system and not in relations or tables. Therefore, a separate
system is used to store the semantic information. Web based queries based on SPARQL [7] are used
to retrieve the information from the ontology for annotation and semantic search. The approach is
very flexible and allows to easily include multiple ontologies. In addition to the FMA, additional
ontologies can be included with the help of the RICORDO system. Based on these annotations it is
possible to conduct semantically driven search queries to find datasets containing the required
anatomical structures or other properties. A detailed description of the semantic annotation is
provided in section 5.9 of this deliverable.

5.4.3 Validation and Versioning

To ensure a high level of quality to the data stored in the repository, the system supports a multi-
step validation process. During the validation process the user can review the metadata extracted
from the data, include additional relevant information and finally publish the data object. Once
published, the new data object is accessible by the other users of the system having the appropriate
permissions.

The objects stored in the database cannot be changed or modified once the validation step has been
completed. However, the modifications to the objects are shown as a new version of the data.
Versioning makes use of a GenericObject; a new version of a dataset will have the same
GenericObject as the ancestor. An example where a new version of the object will be generated
corresponds to the modification in the definition of a clinical study. In case new questions or time
points have been added to the study, a new version of the file will be generated. The clinical study
will have the same unique identifier as the original object, and based on this identifier a new version
can be created. With this approach, the users will still have access to the original data if needed by
their models, but the new version will be shown as the current version of the data.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 78 of 195

5.4.4 Data Organization

The system also allows the user to freely organize the data that they are using. To this aim, the user
interface allows the creation of virtual folders to organize the datasets. This functionality provides
the user with the flexibility to freely create and organize their personal workspace. Hereby, data
objects are not physically moved or duplicated, but the system creates a reference to the data
object, retaining the original file permission and ownership. For collaborations or other purposes, the
user can share parts of his workspace by changing the permission of his folder accordingly. To
simplify the collaboration within a group, the system provides a default shared group folder, which is
accessible and manageable by all members of the group.

Figure 23: The clinical data repository allows each user to freely organize the data into his desired folder
structure for easy access to the data needed for his research. The structure created by one user can be
directly shared to other co-workers. Modifications made by one user are immediately visible in the folder of
the other collaborators. The mechanism should allow efficient collaboration between modellers working on
the same tumour model.

5.5 Auditing

Auditing is an examination of the management controls within an information technology (IT)
infrastructure. The evaluation of obtained evidence determines if the information systems are
safeguarding assets, maintaining data integrity, and operating effectively to achieve the desired goals
or objectives. In order to track activities by individual people, systems, accounts or other entities so-
called audit trails are required. An audit trail (also called audit log) is a security-relevant chronological
record, set of records, and/or destination and source of records that provide documentary evidence
of the sequence of activities that have affected at any time a specific operation, procedure, or event.

5.5.1 Data Model

The clinical data repository makes use of the updated audit data model called XDASv2 [8] introduced
in deliverable D5.2. An implementation in C# of the audit data model has been published as open-
source on the GitHub platform under the MIT license [9].

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 79 of 195

Figure 24: The audit data model XDASv2 used by the clinical data repository for auditing.

5.5.2 Architecture

The architecture of the auditing within the clinical data repository has been designed to support
different and multiple audit systems at the same time. As illustrated in Figure 25, the clinical data
repository relies on the elastic stack. The elastic stack consists of Filebeat, Logstash, Elasticsearch and
Kibana. All previously listed components are licensed under the Apache License Version 2.0. This
ensures the legal compliance with other dependencies of the clinical data repository.

Figure 25: The components of the audit systems and the interactions with the clinical data repository

Filebeat is a lightweight, open-source shipper for log file data. As the next-generation Logstash
Forwarder, Filebeat tails logs and quickly sends this information to Logstash for further parsing and
enrichment or to Elasticsearch for centralized storage and analysis.

Logstash is an open-source data collection engine with real-time pipelining capabilities. Logstash can
dynamically unify data from disparate sources and normalize the data into destinations of choice.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 80 of 195

Elasticsearch is a highly scalable open-source full-text search and analytics engine. It allows to store,
search, and analyze big volumes of data quickly and in near real time. It is generally used as the
underlying engine/technology that powers applications that have complex search features and
requirements.

Kibana is an open-source analytics and visualization platform designed to work with Elasticsearch. It
can be used to search, view, and interact with data stored in Elasticsearch indices. Kibana makes it
easy to perform advanced data analysis and to visualize data in a variety of charts, tables, and maps.

5.5.3 Setup on the CDR

The website and API of the clinical data repository can be configured independently. For this purpose
the log4net.config files located in the respective bin folder illustrated in Figure 26 can be modified
according to given requirements and conditions. It is possible to define the location of the log file
which will be processed by Filebeat. Furthermore, the configuration file offers the possibility to
specify the maximum file size and the amount of file backups before starting rotating the log files.

Figure 26: The log4net.config file to configure the clinical data repository auditing

Filebeat can be downloaded from the official website of elastic [10]. After extracting the content to a
permanent location on the filesystem, Filebeat needs to be configured and installed as a Windows
service. Filebeat is configured with the help of the filebeat.yml file partly listed in Figure 27. The
PowerShell script to install Filebeat as a Windows service is listed in Figure 28.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

 <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler, log4net" />

 </configSections>

 <log4net>

 <appender name="XDASv2RollingFileAppender" type="log4net.Appender.RollingFileAppender">

 <threshold value="XDASv2" />

 <file value="C:\www\VSD\Data\Logs\Audit\xdas.txt" />

 <appendToFile value="true" />

 <rollingStyle value="Size" />

 <maxSizeRollBackups value="10" />

 <maximumFileSize value="250KB" />

 <staticLogFileName value="true" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%message%newline" />

 </layout>

 </appender>

 <level>

 <name value="XDASv2" />

 <value value="50000" />

 </level>

 <root>

 <level value="ALL" />

 <appender-ref ref="XDASv2RollingFileAppender" />

 </root>

 </log4net>

</configuration>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 81 of 195

Figure 27: An excerpt of the file filebeat.yml to configure Filebeat on the clinical data repository

Figure 28: The PowerShell script to install Filebeat as a Windows service on the clinical data repository

Logstash can be downloaded from the official website of elastic [10]. After extracting the content to
a permanent location on the filesystem, Logstash needs to be configured and installed as a Windows
service. Logstash is configured with the help of the logstash.conf file listed in Figure 29.

Figure 29: The logstash.conf file to configure Logstash on the clinical data repository

In order to install Logstash as a Windows service an additional tool called NSSM is needed. NSSM is a
service helper which handles failure of the application running as a service. It monitors the running
service and will restart it if it dies. NSSM can be configured to absolve all responsibility for restarting
an application and let Windows take care of recovery actions. The progress is listed in the system
Event Log to help understand why an application isn't behaving as it should.

############################# Filebeat ######################################

filebeat:

 # List of prospectors to fetch data.

 prospectors:

 # Each - is a prospector. Below are the prospector specific configurations

 -

 paths:

 - C:\www\VSD\Data\Logs\Audit*

 document_type: XDASv2

 force_close_files: true

############################# Output ##

Configure what outputs to use when sending the data collected by the beat.

Multiple outputs may be used.

output:

 logstash:

 hosts: ["localhost:5044"]

delete service if it already exists

if (Get-Service filebeat_audit_xdasv2 -ErrorAction SilentlyContinue) {

 $service = Get-WmiObject -Class Win32_Service -Filter "name='filebeat_audit_xdasv2'"

 $service.StopService()

 Start-Sleep -s 1

 $service.delete()

}

$workdir = Split-Path $MyInvocation.MyCommand.Path

create new service

New-Service -name filebeat_audit_xdasv2 `

 -displayName filebeat_audit_xdasv2 `

 -binaryPathName "`"$workdir\filebeat.exe`" -c `"$workdir\filebeat.yml`""

input {

 beats {

 port => 5044

 ssl => false

 codec => "json"

 }

}

filter {

 if [type] == "XDASv2" {

 json {

 source => "message"

 }

 }

}

output {

 http {

 http_method => "post"

 url => "..."

 }

}

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 82 of 195

Figure 30: Installing Logstash as a Windows service on the clinical data repository using NSSM

Both services Filebeat and Logstash should now appear in the Services tab of the Computer
Management tool as illustrated in Figure 31.

Figure 31: Filebeat and Logstash running as Windows services on the clinical data repository

The setup of the CHIC audit system (audit parser, MongoDB, audit viewer) and the alternative audit
system (Elasticsearch and Kibana) is not described in detail here (see D5.2.2) but an example of the
Kibana user interface is illustrated in Figure 32. A sample audit record using the XDASv2 data model is
listed in Figure 33.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 83 of 195

Figure 32: An example of the Kibana user interface displaying audit records using XDASv2

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 84 of 195

Figure 33: A sample audit record in JSON format using the XDASv2 data model generated by the clinical data
repository and processed by Filebeat and Logstash

{

 "_index": "filebeat-2016.08.08",

 "_type": "XDASv2",

 "_id": "AVZpWuwxUt2j4qrrTnU1",

 "_score": null,

 "_source": {

 "initiator": {

 "account": {

 "domain": "cdr-dev-chic.ics.forth.gr",

 "name": "niklr1",

 "id": 7

 }

 },

 "target": {

 "entity": {

 "sysAddr": "10.1.2.57",

 "sysName": "cdr-dev-chic"

 },

 "data": {

 "affectedObjects": [

 {

 "objectId": 12,

 "objectUrl": "https://cdr-dev-chic.ics.forth.gr/api/objects/12"

 }

]

 }

 },

 "observer": {

 "entity": {

 "sysAddr": "10.1.2.57",

 "sysName": "cdr-dev-chic"

 }

 },

 "action": {

 "event": {

 "id": "0.0.2.2",

 "name": "QUERY_DATA_ITEM_ATTRIBUTE"

 },

 "subEvent": {

 "name": "DOWNLOAD_OBJECT"

 },

 "time": {

 "offset": 1470646363,

 "certainty": 100

 },

 "outcome": "0",

 "extendedOutcome": "0"

 },

 "@version": "1",

 "@timestamp": "2016-08-08T08:52:50.596Z",

 "type": "XDASv2",

 "input_type": "log",

 "count": 1,

 "beat": {

 "hostname": "cdr-dev-chic",

 "name": "cdr-dev-chic"

 },

 "source": "C:\\www\\VSD\\Data\\Logs\\Audit\\xdas.txt",

 "offset": 41179,

 "fields": null,

 "host": "cdr-dev-chic",

 "tags": [

 "beats_input_codec_json_applied"

]

 },

 "fields": {

 "@timestamp": [

 1470646370596

]

 },

 "sort": [

 1470646370596

]

}

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 85 of 195

5.6 Domain Model

The domain model of the clinical data repository, which has been introduced in deliverable D8.1, is
illustrated in Figure 34 for the sake of completeness. Apart from the following modifications, the
domain model stays the same as described in deliverables D8.1 and D8.3:

 The Triplestore entity has been added in order to support multiple triplestores in the export
process of triples.

 AnnotationTripleLog has been added to track the progress of the triple export process. It
stores information about the triple to be exported, the action to be performed (insert or
delete), the status of the export process, the retry count, etc.

 TripleSubjectType has been added in order to support different types of triple subjects such
as object, user, file, etc.

 The AnnotationTriple entity has been added to track modifications of a specific subject
having multiple triples. Only the differences will be processed by the internal export
mechanisms.

Figure 34: The domain model of the clinical data repository with domain classes (blue), domain
enumerations (brown) and their relationships represented as connecting lines.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 86 of 195

5.7 Web-based user interface

The implementation of the web-based user interface offers a main view illustrated in Figure 35 which
serves as entry point for almost all functionalities described throughout the user guide introduced in
the previous deliverable D8.2. On top, an input field enables the end-user to search for datasets (1).
On the left side, the folder explorer enables the user to organize data (2). MyData is the location of
the user’s data; MyGroups is the default collaboration folder accessible to all group members;
MyProjects are folders to organize data into personal projects; SharedFolder are folders of others
which are shared to the user. In the middle of the main view, the toolbox enables the user to initiate
batch commands for multiple objects or folders (3). A preview image assists the user to identify
datasets (4). Several icons enable the user to display additional information about the corresponding
dataset as requested (5). The file name introduced by the clinical data repository is based on a
constructed template (6). The template is updated if the information is available otherwise XX is used
as a placeholder.

Figure 35: The web-based user interface main view of the clinical data repository

Since deliverable D8.3 a new functionality has been integrated to conduct sophisticated search
queries. The query builder can be accessed by hitting the button with the magnifier symbol in the
browse view (3).

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 87 of 195

Figure 36: The dynamic search query builder integrated in the web-based user interface

The search case covered in Figure 36 has the purpose to find patients for whom we have imaging,
clinical and miRNA nephroblastoma data. On the top left it is possible to select if the objects or the
related objects should be searched. In this case, objects of type subject should be returned. Next to
the source selection are the two supported logical operators. Next to the logical operators it is
possible to add or remove groups. Inside a group multiple conditions are allowed. A condition
consists of a source field, a comparison operator and input value of the user.

The query builder itself makes use of AngularJS, Bootstrap, jQuery and Underscore. It has been
published as open-source on the GitHub platform under the MIT license [11].

5.8 RESTful application programming interfaces

The clinical data repository makes use of the REST (Representational State Transfer) architectural
principle to exchange data between applications in a loosely coupled way. Consumers of the REST
API only need to know the resource address and how to make a request to that resource. How the
resource actually gets its data is completely hidden from the consumer. This chapter describes the
HTTP methods used, the applied pagination concept, resource addresses, accepted parameters,
possible requests, responses and errors.

5.8.1 HTTP method definitions

A method refers to HTTP methods (sometimes referred to as verbs) which indicate the desired action
to be performed on the identified resource. The clinical data repository interprets the received HTTP
methods as follows:

Table 35: HTTP methods supported by the clinical data repository REST API

HTTP method Description

GET Getting a resource. (idempotent)

POST Creating a resource. (not idempotent)

PUT Updating a resource. (idempotent)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 88 of 195

DELETE Deleting a resource. (idempotent)

OPTIONS Getting information about the options available on the specific resource.

An idempotent HTTP method can be called many times without different outcomes.

Additionally, the REST API embraces the Open Data protocol (OData) [3]. OData offers many different
query options but the current implementation of the clinical data repository using ASP.NET Web API
makes use of $filter only. This query option is very powerful when it comes to filtering large result
sets based on multiple conditions.

Although ASP.NET Web API supports JavaScript Object Notation (JSON) and Extensible Markup
Language (XML) by default, the implemented and tested REST API makes use of JSON only to send
and receive data [4]. Only the UTF-8 character encoding is supported for both requests and
responses.

5.8.2 Pagination

Pagination is the process of dividing a document into discrete pages in order to keep the loading time
at a predictable level. Requests with large result sets may timeout or be truncated, therefore most
resources returning a large result set are paginated by default.

Table 36: The pagination concept applied to large result sets returned by the clinical data repository

Parameter name Value type Default value Description

rpp int 25 Defines the amount of included results per
page.

Allowed values: 10, 25, 50, 100, 250, 500

page int 0 Defines the current page index.

Allowed values: 0, 1, 2, ...

Example Request

GET https://cdr.chic-vph.eu/api/objects?rpp=25&page=3

Example Response

{

 "totalCount": 99,

 "pagination": {

 "rpp": 25,

 "page": 3

 },

 "items": [

 ...

],

 "nextPageUrl": "https://cdr.chic-vph.eu/api/objects?rpp=25&page=4"

}

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 89 of 195

5.8.3 Include

Include is a special parameter supported by several resources. It enables the caller to define which
properties should be included in the response. This will reduce the amount of calls needed to get all
information. Includable properties are marked under additional information of the resource
response description. It is possible to include multiple properties at the same time by delimiting the
property names by a comma.

Table 37: The includable attribute demonstrated on the basis of the groups resource implemented by the
clinical data repository

Name Description Type Additional information

Id The identifier of the group integer None.

Name The name of the group. string Filterable

Chief The chief of the group. BaseViewModel Includable

SelfUrl The URL to the resource. string None.

Example Request without include

GET https://cdr.chic-vph.eu/api/groups/1

Example Response without include

{

 "id": 1,

 "name": "Test group",

 "chief": {

 "selfUrl": "https://cdr.chic-vph.eu/api/users/2"

 },

 "selfUrl": "https://cdr.chic-vph.eu/api/groups/1"

}

Example Request with include

GET https://cdr.chic-vph.eu/api/groups/1?include=chief

Example Response with include

{

 "id": 1,

 "name": "Test group",

 "chief": {

 "id": 2,

 "username": "niklr1",

 "selfUrl": "https://cdr.chic-vph.eu/api/users/2"

 },

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 90 of 195

 "selfUrl": "https://cdr.chic-vph.eu/api/groups/1"

}

5.8.4 Requests, Responses and Errors

A successful completion of a request returns one of three possible states:

Table 38: The possible return states used by the clinical data repository to indicate a successful completion of
a request

HTTP status code Description

200 OK The default state. On GET requests, the response contains all the requested
objects. On PUT and POST requests, the requested updates have been done
correctly on the persistence layer.

201 Created Returned on successful POST requests when one or more new objects have
been created. The response contains information on the newly created
objects, e.g. identification values.

204 No Content Returned on successful DELETE requests.

An unsuccessful completion of a request returns one of six possible states:

Table 39: The possible return states used by the clinical data repository to indicate an unsuccessful
completion of a request

HTTP status code Description

400 Bad Request The format of the URL and/or of values in the parameter list is not valid. Or
the URL indicates a non-existing action.

401 Unauthorized Either the request does not contain required authentication information or
the authenticated used is not authorized to get a requested object or to do
the request updated operation.

404 Not Found The URL is correct, but the requested object does not (or no longer) exist.

405 Method Not
Allowed

Different action methods may be restricted to one or more of the HTTP
methods (GET, PUT, or POST). The received request uses one that is not
allowed with the action method specified in the URL. In this case, other
parts of the URL are not validated.

500 Internal Server When a method causes an exception that has no adequate handling in the

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 91 of 195

Error method itself. Developers of client systems are kindly requested to report
these response states to the developing team and to transmit information
about the respective request and the response objects.

501 Not Implemented May occur during development. The requested action has been specified
and documented, but not yet implemented.

5.8.5 Resource Description Template

In order to describe the input and output of the API endpoint resources the following template is
used.

Table 40: The template used to describe the API endpoint resources of the clinical data repository

HTTP Method Resource name Requires Authentication? Yes / No

Description A short text describing the resource.

Content-Type The Content-Type entity-header field indicates the media type of the entity-
body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

Parameters A list of all parameters accepted by the resource.

Example Request

An example request which can be sent to the resource.

Example Response

An example response returned by the resource.

5.8.6 Dynamic Search

The sophisticated search queries introduced in the web-based user interface chapter are supported
by the API as well. For this purpose the API has been extended with two new endpoints listed
consecutively.

OPTIONS dynamic_search

Description Returns the available options for this resource.

Example Request

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 92 of 195

OPTIONS https://cdr.chic-vph.eu/api/dynamic_search HTTP/1.1

Example Response

{

 "logicalOperators": [

 {

 "name": "And",

 "displayName": "AND",

 "position": 1

 },

 {

 "name": "Or",

 "displayName": "OR",

 "position": 2

 }

],

 "sourceTypes": [

 {

 "name": "Objects",

 "displayName": "Objects",

 "position": 1,

 "sourceFields": [

 ...

]

 },

 {

 "name": "RelatedObjects",

 "displayName": "Related Objects",

 "position": 2,

 "sourceFields": [

 ...

]

 }

]

}

POST dynamic_search?include={include}

Description Returns the result of the sophisticated search query.

Content-Type application/json

Parameters include (string) Allowed properties to be included:

 See GET objects (D8.3)

Example Request

{

 "sourceType":{

 "name":"Objects"

 },

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 93 of 195

 "logicalOperator":{

 "name":"And"

 },

 "conditions":[

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"Subject",

 "displayName":"Subject",

 "isTypeahead":true

 }

 }

],

 "groups":[

 {

 "sourceType":{

 "name":"RelatedObjects"

 },

 "logicalOperator":{

 "name":"And"

 },

 "conditions":[

 {

 "sourceField":{

 "name":"AnatomicalRegion",

 "displayName":"Anatomical Region"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":7203,

 "displayName":"Kidney",

 "isTypeahead":true

 }

 },

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"RawImage",

 "displayName":"Raw Image",

 "isTypeahead":true

 }

 },

 {

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 94 of 195

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"ClinicalStudyData",

 "displayName":"Clinical Study Data",

 "isTypeahead":true

 }

 },

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"GenomicSample",

 "displayName":"Genomic Sample",

 "isTypeahead":true

 }

 }

]

 }

]

}

Example Response

{

 "totalCount": 7,

 "pagination": {

 "rpp": 25,

 "page": 0

 },

 "items": [

 ...

],

 "nextPageUrl": null

}

5.9 Semantic Integration with RICORDO

The clinical data repository is one of the CHIC components that makes use of the higher level
services, which are provided by the CHIC semantic infrastructure. It can be accessed either by
website or by web service. The former is geared towards end users and the latter for third-party
applications but both use the same core. The common core relies on a relational database which
makes use of the Structured Query Language (SQL). Standard file formats, as described in D8.1,
supported by the clinical data repository include DICOM, MetaImage, Analyze and Nifti for medical
imaging data, CDISC ODM XML for clinical data and MINiML XML for genetic / molecular data. One

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 95 of 195

objective is to extract selected metadata from the files during the upload process to the clinical data
repository automatically. Another objective is to let users such as clinicians, researchers and others
annotate the objects of the clinical data repository manually. Both objectives have in common that
the annotations will be exported to the semantics infrastructure provided by RICORDO within CHIC.

Figure 37: A visual representation of interactions between clinical data repository and RICORDO
components.

RICORDO offers three components called LOLS, RDF store and OWLKB which are relevant within
CHIC. The intended purpose of Local Ontology Lookup Service (LOLS) is to translate between
standardized (but not human readable) identifier strings used for triplestores, and human-readable
labels describing them for a given set of ontologies. RDF store is a metadata wrapper based on
templates serving as a messenger between SPARQL endpoint and end-user, obviating the need to
learn complicated SPARQL syntax. OWLKB is a semantic reasoner which enables to query semantic
data loaded from an ontology. Both components LOLS and OWLKB have the same set of ontologies in
common.

5.9.1 Interactions with the Local Ontology Lookup Service

A connection with LOLS is required to enable clinicians, researchers and others to annotate objects of
the clinical data repository manually. An exemplary use case is the annotation of an object with
anatomical regions. As shown in Figure 38, the user starts to type the name of the anatomical region
and the autocomplete function offered by LOLS returns a list of matching entries. The user selects
the correct entry from the list which completes this step of the annotation process. In this case, it
would not make sense to present matching entries other than those from the Foundational Model of
Anatomy (FMA) ontology to the user. Therefore, the crucial functionality to filter the range of
ontologies to be searched by the autocomplete function is required.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 96 of 195

Figure 38: User dialog to annotate an object with anatomical regions using the autocomplete function
offered by the Local Ontology Lookup Service (LOLS).

5.9.2 Interactions with the RDFstore

Metadata can be extracted during the upload process by the clinical data repository automatically, if
standard file formats are used. However, in the majority of cases the extracted metadata is not in the
form to be stored directly in the RDF store. Therefore, the metadata must be processed to triples
before being exported to the RDF store. This is one of the reasons the clinical data repository stores
the extracted metadata in the relational database. Another reason is the export process itself which
requires a reliable retry logic. Last but not least, the clinical data repository needs to be able to
display the information associated with each object without fetching it from the RDF store every
time. The RDF store itself already offers the functionality to add and delete triples in order to enable
interactions with the clinical data repository.

Adding and deleting triples to/from the RDF store is merely a means to an end. The main objective is
to leverage the powerful search capabilities offered by its very nature of the semantic technology.
For this purpose the RDF store offers an extensible template system which can be used for querying.
A simple query such as “get all objects having more than one file” can be achieved by the RDF store
directly. Once the query involves information stored in an ontology such as “get all objects which are
part of FMA Head" the RDF store relies on the semantic reasoner offered by OWLKB. A direct
interaction between the clinical data repository and the OWLKB is not intended.

To enable interactions with the RDF store, two libraries have been developed and published as open-
source on the GitHub platform under the MIT license. RdfMapperNet [12] is a .NET library to map
classes to RDF triples and RdfstoreNet [13] is a .NET library for the Rdfstore API.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 97 of 195

5.10 Summary

The implementation of the clinical data repository has been made available to the CHIC users and is
running on the CHIC cloud infrastructure. The system includes all the features required to store the
different types of data produced during the clinical workflow, which not only includes patient and
treatment information, but also medical images, generic examination, histology. Due to its
architecture the system can handle virtually any kind of data, but the concept within CHIC was to rely
on standard formats.

The recommended brokered authentication mechanism introduced in deliverable “D5.2 - Security
guidelines and initial version of security tools” has been fully integrated into the clinical data
repository to support Single Sign-On. A single point controls the access to all the infrastructure,
including the CDR. Several interfaces have been developed to store, browse, search and retrieve data
from the CDR. First a complete website has been developed using modern web technologies. In
addition to the website access, a specific REST API has been developed to provide access to the CDR
content for integration with other software components. The features and functionalities are
identical between both interfaces.

Semantic annotation of the clinical data has been integrated within the CHIC RICORDO framework.
The CDR automatically retrieves the information from the files uploaded on the system and
generates semantic triples. These triples are initially stored locally and a synchronization mechanism
has been developed to synchronize the local triples with remote storage locations (in our case,
RICORDO). Manual annotation of specific field is also possible and relies on pre-selected ontologies.

Finally, a system to track the activities by individual users on the system has put in place. This system
tracks the access to the system and to the data to build a chronological audit trail for each user. In
this deliverable we have presented the data model used for audit records and the architecture of the
auditing within the clinical data repository which supports different and multiple audit systems at the
same time.

All components of the clinical data repository have been successfully deployed to the private cloud
infrastructure provided by FORTH allowing great flexibility in terms of compute, storage, and
networking resources. The deployed services can be accessed by the following URLs:

 Production

o Website: https://cdr.chic-vph.eu

o API: https://cdr.chic-vph.eu/api

 Development

o Website: https://cdr-dev-chic.ics.forth.gr

o API: https://cdr-dev-chic.ics.forth.gr/api

https://cdr.chic-vph.eu/
https://cdr.chic-vph.eu/api
https://cdr-dev-chic.ics.forth.gr/
https://cdr-dev-chic.ics.forth.gr/api

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 98 of 195

6 In Silico Trial Repository

6.1 Introduction

Since biological simulations require many computational resources, especially when the simulations
involve multiscale imaging data, the In Silico Trial Repository is a critical component. The In Silico Trial
Repository has been designed and developed in order to be able to persistently store all the
simulation scenarios and the in silico predictions. The input data (the original state of the patient),
the simulation scenario (the in silico treatment) and the output data (the state of the patient after
the in silico treatment) are store persistently after the completion of the simulation scenario. The
aforementioned data are readily available for evaluation, comparison, and validation without the
need for executing the same simulation again. More specifically, the In Silico Trial Repository
contains for each in silico trial all the related information including:

 model input (processed medical data that can be used as input to the specific model or
hypermodel used in the simulation).

 model or hypermodel (not the actual model/hypermodel code used in the simulation but
information about it).

 model output

The content of the In Silico Trial Repository is available to the users (researchers, modellers,
clinicians) through the user interface that has been developed (https://istr.chic-vph.eu), and to the
other CHIC components through the corresponding web services. Consequently, the user is now able
either through the user interface of the Repository, or through other CHIC components, to easily
store and retrieve all the data concerning a complete in silico trial (i.e. a set of simulation runs) that
they or someone else has run. The two CHIC components that usually interact with the In Silico Trial
Repository are the Hypermodelling Execution Framework, which stores the outcome of a simulation
back to the Repository, and the CRAF which retrieves the results. Even if the current status of the In
Silico Trial Repository conforms to the user needs and requirements (WP2), to the legal and ethical
framework (WP4), to the IT Architecture (WP5) and to the integrated platform guidelines (WP10),
The Repository is expected to be constantly updated throughout the remaining period of the CHIC
project.

6.2 Architecture of the In SIlico Trial Repository

One of the main purposes of the In Silico Trial Repository is to test the repeatability and
reproducibility of the experiments conducted in the context of in silico cancer domain.

Repeatability is the ability for an individual to show that an experiment, repeated using the same
material and equipment, yields the same result. In in silico medicine this means that if we run the
same module multiple times on the same computer using the same software the same result would
be yielded.

Reproducibility is the ability for different individuals to show that an experiment repeated using
different but similar material and different equipment yields the same statistical result. In in silico
medicine this means that we are able to recreate a simulation without necessarily using the same
software or computer that was used in the original simulation. Reproducing an experiment is one
important approach that scientists use to gain confidence in their conclusions [1].

The In Silico Trial Repository can serve perfectly the aforementioned initiatives. By storing in one
place the complete information concerning the input data, the output data, and the modules which
participate in the in silico experiments and the in silico trials, the In Silico Trial Repository can

https://istr.chic-vph.eu/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 99 of 195

advance in silico medicine in general, by facilitating the validation of the current in silico medicine
discoveries.

The In Silico Trial Repository consists of three main entities, the subjects, the experiments and the
trials. The basic principles of the In Silico Trial Repository are the following:

 The subject entity represents an instance of a subject. The subject may be a person, healthy
or not, an animal, etc. The subject can be linked to another data repository, such as the CHIC
clinical data repository, a clinical trial management system (ObTiMA, OpenClinica, etc.), a
hospital record management system, etc. Every instance of a subject can be accompanied by
a set of files.

 The in silico experiment entity consists of triples of “initial state of the subject” – “in silico
(hyper)model” – “final state of the subject”. The in silico (hyper)model that is used in an in
silico experiment is not stated in the experiment entity, but in the in silico trial entity in which
the experiment belongs.

 The in silico experiments are organized in in silico trials. All in silico experiments that are part
of the same in silico trial use the same in silico (hyper)model.

 The (hyper)model that is being used (and the location where it is stored) is defined in the in
silico trial entity.

 To be in alliance with the real clinical trial the term “placebo model” is introduced. In case of
cancer disease the placebo model can be a free growth model.

 Each in silico experiment and each in silico trial may be linked to external references (journal
articles, conference proceedings, etc.)

 Apart from the input or output files and the parameters that are patient specific, the In Silico
Trial Repository is able to also store the values that have been assigned to input
miscellaneous parameters of the corresponding hypermodel.

Based on the aforementioned principles, Figure 39 presents the Entity Relationship (ER) diagram of
the In Silico Trial Repository.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 100 of 195

Figure 39: Entity Relationship (ER) diagram of the In Silico Trial Repository

As shown in Figure 39, the main entities used in the Repository are named “tr_trial”,
“tr_experiment”, “tr_reference”, “tr_experiment_reference”, “tr_trial_reference”, “tr_subject”,
“tr_file” and “tr_miscellaneous_parameter”. A description of the aforementioned entities along with
their attributes (MySQL columns) is given below:

Entity tr_subject

 id: Primary key. Used to uniquely identify each row table row.

 description: The (short) textual description of the state of the subject. The subject may be a
person (healthy or patient), an animal, etc.

 subject_external_id: The external id of the subject. This field is used only in the case in which
this subject’s case (real or virtual) is directly or indirectly linked to a subject stored in an
external repository.

 external_url: The URL of the external repository mentioned above. Such external repositories
can be the CHIC clinical data repository, a clinical trial management system (ObTiMA,
OpenClinica, etc.), a hospital record management system, etc.

 comment: Any additional comment

 created_on: The date and time when this subject has been created.

 created_by: The id of the creator of this subject

 modified_on: The date and time when this subject has been modified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 101 of 195

 modified_by: The id of the modifier of this subject

Entity tr_trial

 id: Primary key. Used to uniquely identify each row of the table

 description: The (short) textual description of the trial

 model_id: The id of the in silico model that is used in the trial

 model_url: The URL where the in silico model is located. This URL may point to the CHIC
model/tool Repository or to an external model repository (e.g. the biomodels repository)

 placebo_model_id: The in silico model that is used as a placebo. Usually in cancer disease
this is a free growth model.

 placebo_model_url: The URL where the placebo in silico model is located.

 comment: Any additional comment

 created_on: The date and time when this trial has been created

 created_by: The id of the creator of this trial

 modified_on: The date and time when this trial has been modified

 modified_by: The id of the modifier of this trial

Entity tr_experiment

 id: Primary key. Used to uniquely identify each row of the table

 uuid: Universally unique identifier of the experiment. (This attribute has been created after
request from WP7)

 trial_id: The id of the trial to which this experiment belongs

 description: The (short) textual description of the in silico experiment

 subject_id_in: The id of (the state of) the subject that is used an input to the in silico
experiment

 subject_id_out: The id of (the state of) the subject that is produced after the execution of the
in silico experiment

 placebo: True if in the in silico experiment the “placebo” model must be used

 status: The status of the in silico experiment. It can be “NOT STARTED”, “ON PROGRESS”,
“FINISHED SUCCESSFULLY” and “FINISHED ERRONEOUSLY”

 comment: Any additional comment

 created_on: The date and time when this experiment has been created

 created_by: The id of the creator of this experiment

 modified_on: The date and time when this experiment has been modified

 modified_by: The id of the modifier of this experiment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 102 of 195

Entity tr_reference

 id: Primary key. Used to uniquely identify each row of the table

 title: The name given to the resource

 type: The type of the resource. Example values: “book”, “journal article”, “conference
proceedings”

 creator: The creator(s) of the resource (e.g. authors, etc.)

 issued: The date of formal issuance (e.g. publication) of the resource

 bibliographic_citation: The bibliographic citation of the resource

 is_part_of: The related resource that this resource is part of

 source: The related resource from which the described resource is derived from

 doi: The DOI (Digital Object Identifier) of the resource. This field is empty if the resource
doesn’t have a DOI.

 pmid: The PubMed identifier. This field is empty if the resource is not included in the
PubMed database.

 created_on: The date and time when this reference has been created

 created_by: The id of the creator of this reference

 modified_on: The date and time when this reference has been modified

 modified_by: The id of the modifier of this reference

Entity tr_trial_reference

 id: Primary key. Used to uniquely identify each row of the table

 trial_id: The id of the trial. Linked to the table “tr_trial”

 reference_id: The id of the reference. Linked to the table “tr_reference”

 created_on: The date and time when this record has been created

 created_by: The id of the creator of this record

 modified_on: The date and time when this record has been modified

 modified_by: The id of the modifier of this record

Entity tr_experiment_reference

 id: Primary key. Used to uniquely identify each row of the table

 experiment_id: The id of the experiment. Linked to the table “tr_experiment”

 reference_id: The id of the reference. Linked to the table “tr_reference”

 created_on: The date and time when this record has been created

 created_by: The id of the creator of this record

 modified_on: The date and time when this record has been modified

 modified_by: The id of the modifier of this record

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 103 of 195

Entity tr_file

 id: Primary key. Used to uniquely identify each table row.

 subject_id: The id of the subject to which this file is linked.

 title: The name of the file

 description: The (short) textual description of what this file represents

 kind: Defines what this file is. Example values: “document”, “raw”, “log”,”dat”,”report”, etc.

 source: The location where this file is internally stored

 version: The version of the file

 sha1sum: The sha1 checksum of this file (data). It is used in order to check the consistency of
the file

 comment: Any additional comment

 created_on: The date and time when this record has been created

 created_by: The id of the creator of this record

 modified_on: The date and time when this record has been modified

 modified_by: The id of the modifier of this record

Entity tr_miscellaneous_parameter

 id: Primary key. Used to uniquely identify each table row

 experiment_id: The id of the experiment to which the value of this miscellaneous parameter
is linked

 hypomodel_parameter_id: The id of the hypomodel parameter to which the value of this
miscellaneous parameter is linked. It is a reference link to “mr_parameter” entity from the
Model Repository

 hypermodel_parameter_id: The id of the hypermodel parameter to which the value of this
miscellaneous parameter is linked. It is a reference link to “mr_parameter” from the Model
Repository

 value: The value that has been assigned to this miscellaneous parameter during the
corresponding in silico experiment

 created_on: The date and time when this record has been created

 created_by: The id of the creator of this record

 modified_on: The date and time when this record has been modified

 modified_by: The id of the modifier of this record.

The entity Relationship diagram (ER) which has been depicted in Figure 39, represents the design of
the relational database of the In Silico Trial Repository. This design has been documented in “D8.1:
Design of the CHIC Repositories”, but during the CHIC project it has undergone some changes based
on the new requirements that came from the other work packages. For instance, the

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 104 of 195

“tr_experiment” has now the attribute (table column) uuid which holds the universally unique
identifier for each in silico experiment. Moreover, the “tr_miscellaneous_parameter” entity may be
used in order to hold the values that have been assigned to the model miscellaneous parameters
during the corresponding in silico experiment.

The schema of the relational database of the In Silico Trial Repository that has been just reported in
this chapter, has been designed in order to be able to efficiently store within the CHIC platform all
the persistent data that are related to simulations. The input of the models, the identification of the
patient used in the experiment, the values that have been assigned to the model parameters during
the simulation, the information of the (hyper)model used in the in silico trial and the PDF report that
is generated by the CRAF component are all stored in the MySQL database of the In Silico Trial
Repository. Apart from the MySQL database server which is responsible for the persistent storage of
the simulation data, the In Silico Trial Repository consists of many other components, such as the
Apache Application Server, the Django Web Framework, some back-end and front-end libraries and
dependencies and some security libraries. All the aforementioned components have been utilized in
order to build a fully integrated web application which not only stores the simulation data in a local
relational database, but also takes part in all the complex research and clinical workflows within the
CHIC platform through the web services that have been developed according to the legal and ethical
framework of CHIC. Table 41 presents all the components, external libraries, applications and
dependencies that are being used in the In Silico Trial Repository along with their licenses.

Table 41: External components (dependencies, libraries, applications) of the In Silico Trial Repository

External Component
(Dependency – Library –
Application)

License Usage

Apache HTTP Server Apache license A secure, efficient, and
extensible server that provides
HTTP services in sync with the
current HTTP standards.

MySQL community edition GPL license The relational database server
responsible for persistently
storing information related to
models.

Django Rest Framework Copyright (c) 2011-2016, Tom
Christie All rights reserved

A powerful and flexible toolkit
for building web APIs

djangosaml2 Apache2 license A Django application that
integrates the PySAML2 library
into the Model Repository
project in order to be able to
incorporate the SAML front-
end authentication
mechanism.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 105 of 195

dm.xmlsec.binding BSD license XML security library used to
authenticate web service
requests.

XML security library MIT license A C library that supports XML
security standards (XML
signature, XML encryption,
etc.). It is being used by
djangosaml2 and
dm.xmlsec.binding.

Django BSD license The Python Web Framework
that has been used for the
development of the Model
Repository

jQuery library MIT license A javascript library which is
being used by the Model
Repository for event handling,
animation, and Ajax calls.

Bootstrap framework MIT license HTML, CSS and JS framework
for developing part of the
front-end of the Model
Repository.

As shown in Table 41, nine major external components are used in the In Silico Trial Repository web
application. Some of these components are related to the security (djangosaml2, dm.xmlsec.binding,
XML security library), some are related to the back-end of the application (Apache HTTP Server,
MySQL Database Server, Django, Django Rest Framework) and finally some are related to the front-
end (jQuery library, Bootstrap framework).

Just like the Model Repository, the main component of the In Silico Trial Repository is the Django
web framework which has been utilized in order to develop the major part of the aforementioned
Repository. The business logic, the presentation layer, the URL dispatching, the object relational
mapping and the web services are all handled by the Django framework. Moreover, the Django web
framework has been properly configured in order to integrate all the external libraries (security
dependencies, front-end tools, etc.), to analyze the URLs of the incoming requests, to perform the
business logic, to develop the web services, to handle the HTTP requests, and to connect to the local
relational database of the In Silico Trial Repository. Figure 40 depicts how the Django web framework
accommodates the In Silico Trial Application.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 106 of 195

Figure 40: The In Silico Trial Repository has been integrated into the Django Web Framework

As shown in Figure 40:

 The In Silico Trial Application includes some combination of models, views, templates,
template tags, static files, URLs, middleware, etc. The In Silico Trial Repository application has
been wired into the Django framework with the INSTALLED_APPS setting.

 The In Silico Trial Application uses data models in Python, in order to create a virtual object
for the MySQL relational database of the In Silico Trial Repository.

 The Python file urls.py analyzes the URL of the incoming HTTP request and decides which
Python function that resides inside the view.py file should be called. Then the
aforementioned Python function will either prepare the data to be presented in the HTML
template, or it will connect to the local MySQL database to perform changes based on the
user requirements.

 The “data model” box (inside the In Silico Trial Application), contains many classes which
describe in a more high level the schema of the Repository. It should be noted that the In
Silico Trial Repository data model needs to be always synchronized with the MySQL In Silico
Trial Repository database.

Due to the configuration of the components of the most critical part of the In Silico Trial Repository
which is the Django web framework presented in Figure 40 and due to the external libraries that
have been incorporated and presented in Table 41, the contents of the In Silico Trial Repository can
be exposed through web services to other CHIC components such as the CRAF and the VPH-HF, or
they can be rendered through the browser directly to the user. Just like in the case of the Model
Repository, the protection of the privacy and integrity of the exchanged data (which may include
sensitive information) is ensured by a proxy server which makes use of HTTPS protocol for outbound

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 107 of 195

connections. This is guaranteed by a SSL certificate that has been installed by partner CUSTODIX in
the virtual machine that accommodated the proxy.

Figure 41 presents the integration of the In Silico Trial Repository into the CHIC platform.

Figure 41: Integration of the In SIlico Trial Repository into the CHIC Platform

As shown in Figure 41, the In Silico Trial Repository communicates with the CRAF and the VPH-HF
components. More specifically, before the execution of the hypermodel, CRAF prepares the In Silico
Trial Repository for the storage of the results (creation of subjects, creation of the new experiment,
etc.), and then the Hypermodelling Framework stores the results of the simulation back to the In
Silico Trial Repository. Finally, CRAF component retrieves the results from the In Silico Trial
Repository in order to visualize the results for the user.

6.3 The user interface of the In Silico Trial Repository

The In Silico Trial Repository makes use of the principles of user interface design that have been
mentioned in section 4.3 so as to improve the experience of the user when interacting with the
Repository. Special emphasis has been given during the development of the In Silico Trial Repository
to provide a user interface where the user will need to provide minimal input for inspecting and
evaluating the results of the in silico experiments.

After the authentication of the user (see chapter 3), the user is redirected to the main page of the In
Silico Trial Repository which is depicted in Figure 42. As shown in the aforementioned figure, the user
is able to store a new in silico experiment through a wizard, or browse the content of the Repository
in order to view or even update the available simulations and their status. The workflows for the
storage of a new in silico experiment and the browsing of the content of the Repository are being
described in the next chapters.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 108 of 195

Figure 42: The main page of the In Silico Trial Repository

6.3.1 Wizard for storing a new experiment

A wizard has been created for the In Silico Trial Repository in order for the user to be able to store
the simulation scenarios and the in silico predictions. Although the persistent storage of the input
and output simulation data can be performed by the other CHIC components (CRAF, Hypermodelling
framework) through the corresponding web services of the In Silico Trial Repository, this wizard
provides an alternative way for saving the results through the user interface of the Repository. More
specifically, the user is able through this wizard to store all the related information of the new in
silico experiment, including:

 Description of the in silico trial

 Input and output files of the new in silico experiment

 Description of the in silico experiment

 References related to the new experiment and the corresponding in silico trial

 Description related to the initial state of the patient and the final simulated state of the
patient

This wizard consists of seven steps, and in order for the information of the new in silico experiment
to be valid, the user has to:

 Provide a description of the in silico trial

 Provide a description of the state of the input subject (initial state of the patient)

 Provide a description of the state of the output subject (final, simulated state of the patient)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 109 of 195

 Provide a description for the new in silico experiment

 Provide at least one output file of the simulation. In case of many output files, the names of
the output files should be unique (both the actual file names and the metadata titles)

 Provide input files of the simulation that have different names. The same applies for the
references related to the experiments and the trials (they should have unique titles).

It should be noted that the user is able to skip the three last steps of this wizard for later. More
specifically, the user may not provide any input files, or references related to the simulation.

The screenshots of the different steps regarding the aforementioned wizard are presented in Figures
43-50.

Figure 43: The first step of the wizard. The user provides information related to the in silico trial to which the
new in silico experiment belongs

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 110 of 195

Figure 44: The second step of the wizard. The user provides information related to the initial state of the
patient

Figure 45: The third step of the wizard. The user provides information related to the final - simulated state of
the patient

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 111 of 195

Figure 46: The fourth step of the wizard. The user provides information related to the new in silico
experiment

Figure 47: The fifth step of the wizard. The user uploads one or more output files related to the simulation

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 112 of 195

Figure 48: The sixth step of the wizard. The user uploads one or more input files related to the simulation

Figure 49: The seventh step of the wizard. The user provides one or more references related to the in silico
trial

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 113 of 195

Figure 50: The eighth step of the wizard. The user provides one or more references related to the in silico
experiment

As shown in Figures 43-50, all the information regarding the newly created in silico experiment can
be provided through a single page which consists of different tabs (one tab for each wizard step).
After the provision of all the data of the experiment, the corresponding information will be stored in
the MySQL database of the In Silico Trial Repository. It should be noted that the user is able to store
dynamically in the same page variable number of references, input and output files.

 As illustrated in Figure 51, in case of invalidity concerning the data of the new in silico experiment,
the In Silico Trial Repository notifies the user accordingly with error messages in the corresponding
tabs of the page.

Figure 51: The wizard informs the user about the invalidity of the data when submitting the form

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 114 of 195

6.3.2 Browsing the content of the In Silico Trial Repository

Apart from the wizard for storing a new in silico experiment, the user is able through the user
interface of the In Silico Trial Repository to browse all the available simulations. As discussed in
chapter 6.2 “Architecture of the In Silico Trial Repository”, the basic principles of the in silico trial
database are the subject, the in silico trial, and the in silico experiment. All the in silico experiments
are organized in in silico trials and all the in silico experiments that are part of the same in silico trial
use the same (hyper)model. Consequently, the (hyper)model that is being used for a specific
experiment is defined in the in silico trial entity. This means that no more than one trial can be
assigned to a single (hyper)model.

Based on this design, the first step for browsing the content of the In Silico Trial Repository is for the
user to examine the available trials, and therefore, to inspect the different (hyper)models for which
there are available finished simulations. Figure 52 presents a screenshot of a part of the page which
is related with the presentation of the available in silico trials. As shown in the aforementioned
figure, the description, the ID and the date of the creation of the in silico trial, as well as the name of
the corresponding model, are all available in the same page.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 115 of 195

Figure 52: Part of the page of the In Silico Trial Repository which indicates the available in silico trials

For each in silico trial depicted in Figure 52, the user may apply many actions, such as deleting the
trial, updating the corresponding information, or even viewing the related references and in silico
experiments. With respect to this, Figure 53 presents the available actions that can be applied and
Figure 54 presents the page where the user is being redirected for updating the description of the
trial which is related to Nephroblastoma Multimodeller Hypermodel.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 116 of 195

Figure 53: The user is going to update the description of the in silico trial which is related to Nephroblastoma
Multimodeller Hypermodel

Figure 54: The page where the user applies changes to the trial related to Nephroblastoma Multimodeller
Hypermodel

After choosing the in silico trial of his interest, the user may view the content of all the simulations
that belong to the aforementioned trial, such as the description, the status and the unique identifier
of the experiment. For instance, as shown in figure 55, the user is able to view information related to
the last four executions of Nephroblastoma multimodeller hypermodel. Moreover, the
pseudonymized identification of the patient used in the experiment and the input and output files of
the simulation can all be provided by the user interface of the In Silico Trial Repository. Figure 56
presents the most critical part of this workflow, in which the user downloads the output data of the
last in silico experiment that has been conducted with Nephroblastoma Multimodeller Hypermodel
(for detailed information concerning the Nephroblastoma Multimodeller Hypermodel (or
Nephroblastoma Integrated Hypermodel) please refer to the deliverable D6.3 “Initial Standardized
Cancer Hypermodels”) [30].

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 117 of 195

Figure 55: Information related to the last four simulations (in silico experiments) of Nephroblastoma
multimodeller hypermodel

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 118 of 195

Figure 56: The user downloads the output data of the last in silico experiment which is related to
Nephroblastoma Multimodeller Hypermodel

Finally, since the number of the available in silico experiments stored in the Repository may span
from tens to millions, the filtering of the executions is a necessity. In respect to this, Figure 57
presents a screenshot of the page related to the filtering of the experiments based on the patient
used in the simulation. As shown in the aforementioned figure, in order for the user to filter the
content of the Repository, they could just provide a pseudonymized identification of the patient used
in the desired simulations.

Figure 57: The user is able to filter the available in silico experiments by providing a pseudonymized
identification of the patient used in the simulation

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 119 of 195

6.4 In Silico Trial Repository web services

The in silico trial repository makes use of RESTful web services which are based on the entity
relationship diagram depicted in Figure 39. In silico trial’s repository RESTful web services are based
on the interfaces described in deliverable “D10.2 – Design of the orchestration platform, related
components and interfaces”. This chapter aims at presenting all the necessary information which is
essential in order for the client to access the in silico trial repository’s web services. The description
of the web service, the HTTP method used, the parameters of the service, the URL and the returned
object of the service are all described in the following tables. Each table is related to a specific
RESTful web service. This chapter has been included in this deliverable with the aim of being a
reference point for all the other CHIC components in order for them to be able to access and modify
the content of the In Silico Trial Repository. Nonetheless, this documentation is not considered to be
the final, since minor changes and updates are going to be applied to the schema of the Repository
based on the new requirements that may arise till the end of the CHIC project.

Trial

The following web services (tables 42-47) should be used whenever the client needs to store,
retrieve or delete information related to trials (description of trial, model used in the trial,
comments on the trial, etc.).

Table 42: Information for calling storeTrial web service

storeTrial

Description This method stores the basic descriptive information of the trial,
the model, the placebo model, etc. It returns the id of the trial

URL https://istr.chic-vph.eu/trial_app/storeTrial

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

description= Required – the description of
the trial

model_id= Required – the id of the in silico
model that is used in the trial

model_url= Required – the url where the in
silico model is located

placebo_model_id= Not required – the id of the in

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 120 of 195

silico model that is used as a
placebo

placebo_model_url= Not required – the url where
the placebo in silico model is
located

comment= Not required – comments on
the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrial has one key, named id, and one value which is
associated with this key.

Table 43: Information for calling getAllTrials web service

getAllTrials

Description This method returns the corresponding descriptive information of
all the trials stored in in silico trial repository (trial ids, description
of the trial, comments, etc.).

URL https://istr.chic-vph.eu/trial_app/getAllTrials

Encoding application/x-www-form-urlencoded

HTTP Method GET

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 121 of 195

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrials are as many as the different trials stored
in the in silico trial repository. Each value associated with a specific key is represented by a nested
JSON object. Each key of the aforementioned nested JSON object represents the column name of the
tr_trial entity (see figure 39) and each value of the nested JSON object represents the information of
the corresponding column.

Table 44: Information for calling getUserTrials web service

getUserTrials

Description This method returns information for all the trials that have been
created by the user with which the saml token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserTrials

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 122 of 195

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserTrials are as many as the different trials that
have been created by/for that user. Each value associated with a specific key is represented by a
nested JSON object. The keys of the aforementioned nested JSON object are named id, description,
model_id , model_url, placebo_model_id, comment, created_on, created_by, modified_on,
modified_by.

Table 45: Information for calling getTrialById web service

getTrialById

Description This method returns the descriptive information (description of the
trial, comments, etc.), of the given trial.

URL https://istr.chic-vph.eu/trial_app/getTrialById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 123 of 195

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getTrialById has eleven keys named id, description, model_id,
model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by, modified_on
and modified_by, and eleven values associated with those keys.

Table 46: Information for calling getTrialByModelId web service

getTrialByModelId

Description This method returns the information related to the trial in which
the given model is used (trial id, description of the trial, comments,
etc.). The argument is the id of the tool used in the model
repository

URL https://istr.chic-vph.eu/trial_app/getTrialByModelId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the model
which is used in the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 124 of 195

token>

Json Response

The JSON object returned by method getTrialByModelId has eleven keys named id, description,
model_id, model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by,
modified_on and modified_by, and eleven values associated with those keys.

Table 47: Information for calling deleteTrialById web service

deleteTrialById

Description This method deletes the trial, the experiments included in the trial,
the reference links and everything else that is associated with this
trial

URL https://istr.chic-vph.eu/trial_app/deleteTrialById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the trial

Returns 200 OK if trial has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Experiment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 125 of 195

The following web services (tables 48-57) should be used whenever the client needs to store,
retrieve or delete information related to experiments (description of experiment, link to the trial
to which this experiment belongs, comments on the experiment, etc.).

Table 48: Information for calling storeExperiment web service

storeExperiment

Description This method stores the necessary and descriptive information of an
experiment. It returns the id of the stored experiment

URL https://istr.chic-vph.eu/trial_app/storeExperiment

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

trial_id= Required – the id of the trial
with which the new experiment
is associated

description= Required – the description of
the new experiment

subject_id_in= Required – the id of the subject
that is used as an input to the
new in silico experiment

subject_id_out= Required – the id of the subject
that is produced after the
execution of the new in silico
experiment

placebo= Required – true if in the in silico
experiment the placebo model
must be used, otherwise false

status= Not required – the status of the
in silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

 comment= Not required – Comments
related to the experiment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 126 of 195

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeExperiment has one key, named id, and one value which is
associated with this key.

Table 49: Information for calling getUserExperiments web service

getUserExperiments

Description This method returns information for all the experiments that have
been created by the user with which the saml token is associated

URL https://istr.chic-vph.eu/trial_app/getUserExperiments

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 127 of 195

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserExperiments are as many as the different
experiments that have been created by/for that user. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, trial, description, subject_id_in , subject_id_out, placebo, status, comment, uuid, created_on,
created_by, modified_on, modified_by. The value which corresponds to the key trial is another json
object with keys id and model_id. The value which corresponds to the key subject_id_out is another
json object with keys id, subject_external_id and description. The value which corresponds to the key
subject_id_in is another json object with keys id, subject_external_id and description.

Table 50: Information for calling getUserPendingExperiments web service

getUserPendingExperiments

Description This method returns information for all the experiments with status
"either "NOT STARTED" or "ON PROGRESS" that belong to the user
associated with the SAML token.

URL https://istr.chic-vph.eu/trial_app/getUserPendingExperiments

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 128 of 195

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserPendingExperiments are as many as the
different "NOT STARTED" or "ON PROGRESS" experiments that have been created by/for that user .
Each value associated with a specific key is represented by a nested JSON object. The keys of the
aforementioned nested JSON object are named id, trial, description, subject_id_in , subject_id_out,
placebo, status, comment, uuid, created_on, created_by, modified_on, modified_by. The value
which corresponds to the key trial is another json object with keys id and model_id. The value which
corresponds to the key subject_id_out is another json object with keys id, subject_external_id and
description. The value which corresponds to the key subject_id_in is another json object with keys id,
subject_external_id and description.

Table 51: Information for calling getAllExperimentsByTrialId web service

getAllExperimentsByTrialId

Description This method returns information of all the experiments which
belong to a given trial

URL https://istr.chic-vph.eu/trial_app/getAllExperimentsByTrialId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

trial_id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 129 of 195

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllExperimentsByTrialId are as many as the
different experiments which belong to the given trial. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_experiment entity (see figure 39) and each value of the nested JSON
object represents the information of the corresponding column.

Table 52: Information for calling getExperimentById web service

getExperimentById

Description This method returns the experiment and the related information
stored under the id (description, subject_id_in, subject_id_out,
placebo, status, comment, etc.)

URL https://istr.chic-vph.eu/trial_app/getExperimentById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 130 of 195

Json Response

The JSON object returned by method getExperimentById has thirteen keys named id, uuid, trial_id,
description, subject_id_in, subject_id_out, placebo, status, comment, created_on, created_by,
modified_on and modified_by, and twelve values associated with those keys.

Table 53: Information for calling getExperimentByUuid web service

getExperimentByUuid

Description This method returns the experiment and the related information
stored under the uuid (description, subject_id_in, subject_id_out,
placebo, status, comment, etc.)

URL https://istr.chic-vph.eu/trial_app/getExperimentByUuid

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

uuid= Required – the uuid of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentByUuid has thirteen keys named id, uuid,
trial_id, description, subject_id_in, subject_id_out, placebo, status, comment, created_on,

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 131 of 195

created_by, modified_on and modified_by, and thirteen values associated with those keys.

Table 54: Information for calling getExperimentStatusById web service

getExperimentStatusById

Description This method returns the status of the experiment

URL https://istr.chic-vph.eu/trial_app/getExperimentStatusById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentStatusById has one key named status, and one
value associated with this key.

Table 55: Information for calling getExperimentsByStatus web service

getExperimentsByStatus

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 132 of 195

Description This method returns all the experiments that are on a given status

URL https://istr.chic-vph.eu/trial_app/getExperimentsByStatus

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

status= Required – the status of the in
silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getExperimentsByStatus are as many as the
different experiments that are on a given status. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_experiment entity (see figure 39) and each value of the nested JSON
object represents the information of the column.

Table 56: Information for calling updateExperimentStatus web service

updateExperimentStatus

Description This method updates the status of a given experiment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 133 of 195

URL https://istr.chic-vph.eu/trial_app/updateExperimentStatus

Encoding application/x-www-form-urlencoded

HTTP Method PUT

PARAMETERS (parameters
passed through request body)

id= Required – the id of the
experiment

status= Required - the status of the in
silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns 200 OK if the status of the experiment has been updated

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 57: Information for calling deleteExperimentById web service

deleteExperimentById

Description This method deletes the experiment and the corresponding
experiment references (links)

URL https://istr.chic-vph.eu/trial_app/deleteExperimentById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 134 of 195

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
experiment

Returns 200 OK if experiment has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Miscellaneous parameter

The following web services (tables 58-63) should be used whenever the client needs to store,
retrieve or delete information related to miscellaneous parameters (value assigned to
miscellaneous parameter, link to the experiment with which the miscellaneous parameter is
associated, etc.).

Table 58: Information for calling storeMiscellaneousParameter web service

storeMiscellaneousParameter

Description This method stores information related to a miscellaneous
parameter. It returns the id of the created record.

URL https://istr.chic-vph.eu/trial_app/storeMiscellaneousParameter

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

experiment_id= Required – the id of the
experiment with which the
miscellaneous parameter is
associated

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 135 of 195

hypomodel_parameter_id= Required – the id of
hypomodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

hypermodel_parameter_id= Not required – the id of
hypermodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

value= Required – the value that has
been assigned to miscellaneous
parameter for a given
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeMiscellaneousParameter has one key, named id, and one
value which is associated with this key.

Table 59: Information for calling getAllMiscellaneousParameters web service

getAllMiscellaneousParameters

Description This method returns information of all miscellaneous parameters

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 136 of 195

URL https://istr.chic-vph.eu/trial_app/getAllMiscellaneousParameters

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParameters are as many as the
different miscellaneous parameters that are stored in the in silico trial repository. Each value
associated with a specific key is represented by a nested JSON object. Each key of the
aforementioned nested JSON object represents the column name of the
tr_miscellaneous_parameter entity (see figure 39) and each value of the nested JSON object
represents the information of the corresponding column.

Table 60: Information for calling getUserMiscellaneousParameters web service

getUserMiscellaneousParameters

Description This method returns information for all the miscellaneous
parameters that have been created by the user with which the saml
token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserMiscellaneousParameters

Encoding application/x-www-form-urlencoded

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 137 of 195

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserMiscellaneousParameters are as many as
the different miscellaneous parameters that have been created by/for that user. Each value
associated with a specific key is represented by a nested JSON object. The keys of the
aforementioned nested JSON object are named id, experiment_id, hypomodel_parameter_id
,hypermodel_parameter_id , value, created_on, created_by, modified_on, modified_by.

Table 61: Information for calling getAllMiscellaneousParametersByExperimentId web service

getAllMiscellaneousParametersByExperimentId

Description This method returns information of all miscellaneous parameters which are
associated with a given experiment

URL https://istr.chic-
vph.eu/trial_app/getAllMiscellaneousParametersByExperimentId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER
(parameter should
be passed through

experiment_id= Required – the id of the experiment

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 138 of 195

the URL – query
string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64 encoded
compressed SAML token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParametersByExperimentId are
as many as the different miscellaneous parameters which are associated with the given experiment.
Each value associated with a specific key is represented by a nested JSON object. Each key of the
aforementioned nested JSON object represents the column name of the
tr_miscellaneous_parameter entity (see figure 39) and each value of the nested JSON object
represents the information of the corresponding column.

Table 62: Information for calling getMiscellaneousParameterById web service

getMiscellaneousParameterById

Description This method returns information of the miscellaneous parameter
stored under the id (experiment_id, hypomodel_parameter_id,
hypermodel_parameter_id, value, etc)

URL https://istr.chic-vph.eu/trial_app/getMiscellaneousParameterById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
miscellaneous parameter

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 139 of 195

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getMiscellaneousParameterById has eight keys named
experiment_id, hypomodel_parameter_id, hypermodel_parameter_id, value, created_on,
created_by, modified_on and modified_by, and eight values associated with those keys.

Table 63: Information for calling deleteMiscellaneousParameterById web service

deleteMiscellaneousParameterById

Description This method deletes the miscellaneous parameter

URL https://istr.chic-
vph.eu/trial_app/deleteMiscellaneousParameterById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string
parameter)

id= Required – the id of the
miscellaneous parameter

Returns 200 OK if miscellaneous parameter has been deleted

400 http status code if bad request

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 140 of 195

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Subject

The following web services (tables 64-68) should be used whenever the client needs to store,
retrieve or delete information related to the subject (description of the subject, comments on the
subject, etc.).

Table 64: Information for calling storeSubject web service

storeSubject

Description This method stores information related to a subject. The method
returns the id of the created subject

URL https://istr.chic-vph.eu/trial_app/storeSubject

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

description= Required – the description of
the state of the subject

subject_external_id= Not required – the external id
of the subject

external_url= Not required – the url of the
external repository

comment= Not required – comments on
the subject

Returns 200 OK & JSON object

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 141 of 195

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeSubject has one key named id and one value associated
with this key.

Table 65: Information for calling deleteSubjectById web service

deleteSubjectById

Description This method deletes a subject (and the linked files) stored under
the provided subject_id

URL https://istr.chic-vph.eu/trial_app/deleteSubjectById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the subject

Returns 200 OK if subject has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 142 of 195

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 66: Information for calling getAllSubjects web service

getAllSubjects

Description This method returns all the subjects that are stored in the
Repository

URL https://istr.chic-vph.eu/trial_app/getAllSubjects

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllSubjects are as many as the different subjects
that are stored in the in silico trial repository. Each value associated with a specific key is represented
by a nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the tr_subject entity (see figure 39) and each value of the nested JSON object represents the
information of the corresponding column.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 143 of 195

Table 67: Information for calling getUserSubjects web service

getUserSubjects

Description This method returns information for all the subjects that have been
created by the user with which the saml token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserSubjects

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserSubjects are as many as the different
subjects that have been created by/for that user. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, description, subject_external_id , external_url, comment, created_on, created_by, modified_on,
modified_by.

Table 68: Information for calling getSubjectById web service

getSubjectById

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 144 of 195

Description This method returns the subject and the related information stored
under the id (description, subject_external_id, external_url,
comments, etc.)

URL https://istr.chic-vph.eu/trial_app/getSubjectById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the subject

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getSubjectById has nine keys named id, description,
subject_external_id, external_url, comment, created_on, created_by, modified_on and modified_by,
and nine values associated with those keys.

Reference

The following web services (tables 69-75) should be used whenever the client needs to store,
retrieve or delete information related to experiment’s/trial’s references (title of reference,
reference authors, link to the experiment/trial with which this reference is associated, etc.).

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 145 of 195

Table 69: Information for calling storeTrReference web service

storeTrReference

Description This method stores the information of a reference and returns the
id

URL https://istr.chic-vph.eu/trial_app/storeTrReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

title= Required – the title of the
reference

type= Not required – the type of the
reference (book, journal article,
etc.)

creator= Not required – the creator(s) of
the resource

issued= Not required – the date of
formal issuance

 bibliographic_citation= Not required – bibliographic
citation of the resource

 is_part_of= Not required – the related
resource that this resource is
part of

 source= Not required – the related
resource from which the
described resource is derived
from

 doi= Not required – digital object
identifier of the resource

 pmid= Not required – pubmed
identifier

Returns 200 OK & JSON object

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 146 of 195

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrReference has one key named id, and one value
associated with this key.

Table 70: Information for calling getAllTrReferences web service

getAllTrReferences

Description This method returns all the references and the related information

URL https://istr.chic-vph.eu/trial_app/getAllTrReferences

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 147 of 195

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrReferences are as many as the different
references that are stored in the in silico trial repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_reference entity (see figure 39) and each value of the nested JSON object
represents the corresponding information of the column.

Table 71: Information for calling getTrReferencesByTrialId web service

getTrReferencesByTrialId

Description This method returns the related information of all references which
are associated with the given trial.

URL https://istr.chic-vph.eu/trial_app/getTrReferencesByTrialId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

trial_id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 148 of 195

Json Response

The keys of the JSON object returned by method getTrReferencesByTrialId are as many as the
different references that are associated with the given trial. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the tr_reference entity (see figure 39) and each value of the nested
JSON object represents the information of the corresponding column.

Table 72: Information for calling getTrReferencesByExperimentId web service

getTrReferencesByExperimentId

Description This method returns the related information of all the references
which are associated with the given experiment.

URL https://istr.chic-vph.eu/trial_app/getTrReferencesByExperimentId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

experiment_id= Required – the id of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrReferencesByExperimentId are as many as the
different references that are associated with the given experiment. Each value associated with a

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 149 of 195

specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_reference entity (see figure 39) and each value of the
nested JSON object represents the information of the corresponding column.

Table 73: Information for calling deleteTrReferenceById web service

deleteTrReferenceById

Description This method deletes a reference and the corresponding links to
trials or experiments

URL https://istr.chic-vph.eu/trial_app/deleteTrReferenceById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
reference

Returns 200 OK if reference (along with the links) has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 150 of 195

Table 74: Information for calling storeLinkToReference web service

storeLinkToReference

Description This method creates a link from a trial or an experiment to a
reference. Returns the id of the link

URL https://istr.chic-vph.eu/trial_app/storeLinkToReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

reference_id= Required – the id of the
reference

option= Required – the type link
(trial/experiment)

id= Required – the id of the
experiment/trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeLinkToReference has one key named id (the id of the
created link), and one value associated with this key.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 151 of 195

Table 75: Information for calling deleteReferenceLinkById web service

deleteReferenceLinkById

Description This method deletes the reference link (trial or experiment link)
depending of the provided argument

URL https://istr.chic-vph.eu/trial_app/deleteReferenceLinkById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

id= Required – the id of the link

option= Required – type of the link
(trial/experiment)

Returns 200 OK if reference link has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

File

The following web services (tables 76-81) should be used whenever the client needs to store,
retrieve or delete information related to files containing experiment data (title of file, description
of file, file version, etc.).

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 152 of 195

Table 76: Information for calling storeTrFile web service

storeTrFile

Description This method stores the file information and returns the id

URL https://istr.chic-vph.eu/trial_app/storeTrFile

Encoding Multipart/form-data

HTTP Method POST

PARAMETERS (parameters
passed through request body)

subject_id= Required – the id of the subject
with which the file is associated

title= Required – the title of the file

description= Not required – description of
the file

kind= Not required – defines what this
file is (document, spreadsheet,
csv, etc.)

version= Required – the version of the
file (should be in the format X.X

for example 1.2)

sha1sum= Not required – the sha1
checksum of the file

comment= Not required – comments on
the file

file= Required – the actual file (blob)

 engine= Not required – The engine that
is suitable for executing this file

 license= Not required – The license
associated with this file

Returns 200 OK & JSON object

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 153 of 195

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrFile has one key, named id, and one value which is
associated with this key.

Table 77: Information for calling deleteTrFile web service

deleteTrFile

Description This method deletes a certain file

URL https://istr.chic-vph.eu/trial_app/deleteTrFile

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns 200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 154 of 195

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 78: Information for calling getTrFileById web service

getTrFileById

Description This method returns the file (which is associated with a subject)

URL https://istr.chic-vph.eu/trial_app/getTrFileById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns

(Content-Type:
application/force-download

Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 79: Information for calling getTrFilesOfKind web service

getTrFilesOfKind

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 155 of 195

Description This method returns the information of all the files of a specific
kind of a given subject

URL https://istr.chic-vph.eu/trial_app/getTrFilesOfKind

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

subject_id= Required – the id of the subject

kind= Required - kind of file
(document, spreadsheet, csv,
etc.)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrFilesOfKind are as many as the different latest
version files of a specific kind which are associated with the given subject. Each value associated with
a specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_file entity (see figure 39) and each value of the nested
JSON object represents the information of the column.

Table 80: Information for calling getTrFilesBySubjectId web service

getTrFilesBySubjectId

Description This method returns information (only metadata, not attachment)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 156 of 195

for all the files that are associated with the given subject

URL https://istr.chic-vph.eu/trial_app/getTrFilesBySubjectId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

id= Required – the id of the subject

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrFilesBySubjectId are as many as the different
files that are associated with the given subject. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, title, description, kind, version, sha1sum, comment, engine, license, created_on, created_by,
modified_on, modified_by.

Table 81: Information for calling getUserTrFiles web service

getUserTrFiles

Description This method returns information (only metadata, not attachment)
for all the files (stored in in silico trial repository) that have been
created by the user with which the saml token is associated

URL https://istr.chic-vph.eu/trial_app/getUserTrFiles

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 157 of 195

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserTrFiles are as many as the different files that
have been created by/for that user. Each value associated with a specific key is represented by a
nested JSON object. The keys of the aforementioned nested JSON object are named id, subject, title,
description, kind, version, sha1sum, comment, engine, license, created_on, created_by,
modified_on, modified_by.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 158 of 195

7 Semantic Metadata Management

7.1 Relevant CHIC Resources

The semantic framework in CHIC is dedicated to the support of providing machine-processable
descriptions of CHIC resources. CHIC resources are computational artefacts that are created, stored
and managed by the varied components of the CHIC platform (in particular the Model Repository,
the Hypermodel Editor, and the Clinical Data Repository).

CHIC resources include prominently encoded mathematical models of two different categories, the
CHIC hypomodels and the CHIC hypermodels which result from the assembly of relevant
hypomodels. A large motivation for the metadata description of these resources in CHIC is to
facilitate the relevant and well informed combination of hypomodels. This is the reason why
hypomodels are the primary CHIC resources handled in the metadata semantic framework. The CHIC
semantic framework also intends to recording descriptions of the hypermodels and their parameters,
consistently with combined hypomodels. To this end, such descriptions are also thought to be
semantically interoperable with descriptions of data used in running the models in the CHIC platform
and, in particular, clinical data.

Consequently, the following are the main types of CHIC resources that are relevant to the semantic
treatment of their descriptions:

 Model
o Hypomodel
o Hypermodel

 Model parameter
o Input and output
o Biologically meaningful parameters

 Clinical data objects

7.2 Annotation of Resources in order to make interpretation explicit and
usage of Processable Reference Knowledge Models (Ontologies)

The method and technology used in order to record the descriptions of the CHIC resources consists in
using language independent conceptual structures so as to generate a formal vocabulary that will
ensure the explicitness of a number of information elements. The primary types of encoded
information are the domain specific interpretation of the objects and the record of information in the
model code. Domain interpretation is usually not encoded explicitly in models as their encoding
language is not designed to handle the required qualitative descriptions, however, the range of non-
encoded information may be somewhat broader. For example, units of measurements for quantities
ascribed to parameters may remain only implicit and thus not explicitly handled by the software
required to process the model. In this case, many models come with parameters that have an
assigned default value and take a range of numerical values standing for quantities. While the model
is designed to expect an order of values that is consistent with an implicit unit or scale, this is not
explicitly encoded and remains a hidden assumption which is in the best case documented as part of
an informal description of the model.

In order to make informal descriptions of models explicit and formally encoded, the process of
annotation consists in representing a CHIC resource as an object in its own rights and ascribing to it a
range of attributes and characteristics using a formal knowledge representation language. The result
is a simple description of a resource that can then be integrated within a larger range of resource
descriptions. The overall result is a semantically integrated set of descriptions of CHIC resources that
can then be interrogated to produce comparisons and elicit relationships based on the range of

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 159 of 195

encoded information. Consequently, a use case for this sort of information is the construction of
categorizations for the models and their parameters and another example is the use of such
categorizations to elicit relationships of consistency and correspondence between the parameters or
between the models. For example, the usage of controlled vocabularies and semantically encoded
constraints for the units regarding the concentration of drugs, may facilitate the check of consistency
when linking the parameters of different hypomodels.

In order to accomplish the aforementioned goal, the CHIC semantic framework uses formalized
theories of domain specific descriptions, called ‘ontologies’ from which the CHIC framework may
derive unique ways of referring to descriptive terms. Moreover, through consistent reuse and
interlinking between the aforementioned terms, the semantic integration is ensured. In addition to
this, the use of ontologies combined with the use of unique identifiers for CHIC resources results in a
knowledge representation which is a form of data. Such semantic data, named ‘metadata’, from the
standpoint of the CHIC resources description, is created, stored and retrieved within the semantic
parts of the overall integrating CHIC infrastructure.

7.3 Semantic Components and RICORDO Architecture

As shown in Figure 58, (image obtained from http://www.ricordo.eu), the core of the semantic
infrastructure in CHIC rests on the reuse and adaptation of the RICORDO third-party solution. The
semantic infrastructure provides layers of services between backend semantic data storage and
ontology storage in order to interact with knowledge management tools in an application context.
CHIC defines an application area in which the sources of data are the CHIC model and clinical data
repositories and CHIC user interfaces take on the role of consumers and producers of metadata
through the use of semantic services.

Figure 58: (Image obtained from http://www.ricordo.eu.). The overall RICORDO architecture in relation to
envisioned (non-CHIC related) application contexts

The semantic part of the CHIC infrastructure has a modular architecture which consists of the two
main components, the Annotations Store and the Knowledge Database. Both components are
described in the following chapters.

http://www.ricordo.eu/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 160 of 195

7.3.1 Annotations Store

An annotation store is a database in which annotation statements are registered by using an
encoded dedicated format. CHIC annotations are encoded in the Resource Description Framework
[16], which is a W3C standard for the description of resources. RDF is serialised in a number of
syntaxes but the choice of syntax does not affect the storage of annotation. In principle, an
annotation is a triple (a 3-placeslist) such that:

 The first element is the ‘subject’ of annotation

 The second element is ‘predicate’, a binary relation that holds between the first element and
the third

 The third element is the ‘object’ of annotation.

The objects in questions are unique identifiers in the form of URIs which most of the time are URLs.
For example, in order to express the fact that a given model is a model addressing a modelling
question in oncology, an annotation statement would require three objects:

 An object referring to the specific model, for example, <http:://example.com#ThisModel>

 An object representing the relation linking a model to a modelling question area, for example
<http://example.com#modelsQuestionIn>

 An object represenating the oncology field, for example,
<http://www.example.com#Oncology>

An annotation statement can be written as follows in order to represent the intended description:

<http:://example.com#ThisModel> http://example.com#modelsQuestionIn
<http://www.example.com#Oncology> .

The aforementioned statement would be stored and be retrieved in full or in part. For instance, the
object could be easily retrieved, given the subject and the predicate.

An RDF database storing annotations is called a ‘triple store’. There are various implemented
systems providing triple storage which implement the standards for querying and manipulating RDF
data called SPARQL [17]. These systems implement basic functionalities for the Creation, Retrieval,
Update and Deletion of data.

7.3.2 Knowledge Database

A knowledge base is a form of storage for the knowledge contained in the formal definition of an
ontology. The language used in specifying ontologies in CHIC is the Ontology Web Language (OWL)
[18], which is a W3C standard. OWL is embedded by design in the RDF technology. It comes with
built in language elements for describing kinds of objects and their relations. OWL is domain
independent and used to formalize the ontology in a given domain. It provides the ability to define
‘classes’ of objects, their instances and to define further specific classes based on logical restrictions
using domain relationships.

A particularity of knowledge bases is that they include an inference system in the form of reasoning.
The main contribution of such inference system is to perform logical computation based on the
equivalence and the subsumption between classes and to categorize instances; it is also a
mechanism for checking the logical consistency of an ontology, i.e., that incompatible facts are not
derivable from it. There is also a variety of reasoners that are available which differ in their
performance and the complexity of logical fragments of OWL on which they perform.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 161 of 195

7.3.3 Annotation Store (RDF Triplestore)

The CHIC semantic infrastructure uses the Fuseki2 server as RDF triple store [19]. Fuseki2 implements
the SPARQL protocols for basic management operations. In CHIC, an instance of Fuseki2 is used as
backend storage for annotations.

7.3.4 Knowledge Base (OWL Knowledge Base)

The CHIC semantic infrastructure uses the RICORDO OWLKB application [20] in order to instantiate
and persist an OWL knowledge base. The RICORDO OWLKB uses a third party library (OWL API) [21]
and provides an extra layer of services around the knowledge base. It is deployed in CHIC using the
Elk reasoner [22].

7.4 Semantic Services

7.4.1 RDF Services

In addition to direct SPARQL endpoint access to the triple store, semantic services are also being
provided. By using the SPARQL language and protocol, the triple store can be accessed, queried and
updated programmatically. The RICORDO RDF store application [23] is used as a middle man to
simplify these operations by providing RESTfull web services that can be invoked through the use of
simpler templates. Templates provide a predefined mechanism for performing selected operations
under domain specific assumptions (for example, retrieval of models) and are accessed through a
number of documented parameters.

There are both annotation management services to allow for the creation and addition of
annotations to the CHIC RDF store and also query services that allow for the retrieval of annotation
elements matching specified query criteria.

Rdfstore 2.0 is the so-called Ricordo metadata wrapper. It serves as a messenger between SPARQL
endpoint and end-user. The motivation behind Rdfstore 2.0 is to alleviate the need to handle SPARQL
syntax and make it simpler and more straightforward to deal with metadata. This is done with a
system of templates, which are customized at the organizational level.

The end-user tells the appropriate systems team: ``I want a form that'll let me query the database for
X.'' The team creates a template for that query. Now the end-user can select that template and query
the database for X by filling out a simple form, no SPARQL required.

7.4.2 Installation Requirements

- Java and Java runtime: Rdfstore 2.0 requires Java Runtime and a Java compiler for its
installation.

- RDF Triple Store: Rdfstore 2.0 assumes that a triple store is running and has exposed a
SPAQRL endpoint. Rdfstore 2.0 has been used in combination with the following:

o Virtuoso Open-source Edition (GNU GPL license)

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

o Fuseki and Fuseki2 (Apache 2.0 license)

https://jena.apache.org/documentation/fuseki2/

o Specific configuration information is provided below for these.

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
https://jena.apache.org/documentation/fuseki2/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 162 of 195

7.4.3 Installation Steps

1. Rdfstore 2.0 is available for download from:

 http://github.org/semitrivial/rdfstore

Command "git clone" can be used, or any other means, to copy this repository locally.

2. Within the directory containing the copy of the repository, compile Rdfstore using "make"

(or manually: "javac -g Rdfstore.java")

3. Within that directory, run "java Rdfstore -help" to get help on the command line arguments,

or see further below.

In order for Rdfstore 2.0 to be useful, templates need to be present in the relevant subdirectory,

as discussed below.

7.4.4 Running RDFstore 2.0

 Rdfstore 2.0 can be run with the following command-line arguments:

Table 82: RDFstore command-line options

Argument Description Example or default

-templates
<directory>

Specifies the
location of the
directory
containing
Rdfstore
templates.

Default: ./templates

-endpoint <URL> Specifies the
SPARQL query
endpoint location
for the
coordinated triple
store.

http://localhost:3030:/chic/query?force-
accept=text%2Fplain&output=tsv&query=SELECT...

http://localhost:3030/chic/query?force-
accept=text%2Fplain&output=tsv&query=

-method <GET or
POST>

Specifies which
HTTP method
your SPARQL
endpoint uses.

Default: GET

-update <URL> Specifies a
separate address

Default: copies "endpoint"

http://github.org/semitrivial/rdfstore

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 163 of 195

for updates,
when applicable.

-updatemethod
<GET or POST>

Specifies the
HTTP method for
a separate
address for
updates, when
applicable.

Default: copies "method"

-format <format> A string,
containing "%s".
The %s will be
replaced by the
query itself,
useful for things
like triplestore-
specific
preambles, etc.

Default: %s

-port <number> Specifies which
port Rdfstore will
listen for
connections on.

Default: 20060

-help Displays a help
screen.

7.4.5 Simple GUI

While the goal of Rdfstore 2.0 is to deliver an API, it comes with a built-in simple GUI mainly for the
purpose of illustration and education. When Rdfstore is running, the GUI can be accessed at
http://HOST:PORT/gui/. For example, if HOST is "localhost" and PORT is "20060", the GUI would be
accessible within a Web browser at:

http://localhost:20060/gui/

http://localhost:20060/gui/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 164 of 195

7.4.6 Template System

SPAQRL is the query language for RDF data. In our context, a template is a SPARQL query which can
comport up to ten parameters. RDFStore reduces SPARQL to a matter of filling-in-the-blanks, namely,
one blank for each parameter. Templates can be written specifically to answer specific metadata
management needs. Furthermore, a given template may therefore be used while varying the values
of its parameters.

For instance, the SPARQL query to find all things which are "part-of" the class "acids" might look like
so:

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <http://example.com/ontology#acids>

 }

Now suppose you want a generic form for "find all things 'part-of' the class 'X'", where the end-user
fills in X. Create a template file with a name like "get_parts_of.txt" with contents:

SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

Here, [0] is a variable. Other available variables are [1] through [9].

Templates should be stored in a template directory in the form of a text file. When you run Rdfstore,
use the command line to tell Rdfstore which directory the templates are stored in (unless you use the
default directory). The template's name (minus ".txt") will become part of Rdfstore's GUI. Assuming
the template in the above example has been loaded by RDFStore, the template can be accessed at an
address like http://yoururl.org:20060/get_parts_of/?0=acids

Figure 59: Simple Rdfstore 2.0 GUI

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 165 of 195

Adding template to a running RDFStore instance is not supported and the addition of templates
requires restarting Rdfstore.

7.4.6.1 Advanced Template Commands

At the beginning of a template file, certain special commands can be issued. You can give a name to a
variable, as in the following example:

 # 0 = whole

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

In this example, the command is that first line, # 0 = whole. It says that the name of the variable 0 is
'whole' (so the template is searching for 'parts' of the 'whole'). This is how the Rdfstore demo GUI
knows which placeholder text to put in the different form fields.

The other type of command you can use here is a preprocessor command, as in the following
example:

 # 0 = whole

 # Preprocessor0 = http://open-physiology.org:20080/terms/%s?longURI=yes&json=yes

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

The command,

Preprocessor0 = http://open-physiology.org:20080/terms/%s?longURI=yes&json=yes

indicates that the contents of variable 0 will be passed through the indicated preprocessor. For
example, if the user enters 'FMA_50801' for variable 0, RDFStore will replace the '%s' in the
Proprocessor0 string with 'FMA_50801' to get the URL:

http://open-physiology.org:20080/terms/FMA_50801?longURI=yes&json=yes

which points to OWLKB and gets a list of subclasses of FMA_50801. RDFStore will use that list of
subclasses, and query the triplestore for all things which are part-of any subclass of FMA_50801.

7.4.6.2 RDFStore API

RDFStore has a dynamic API. The API is defined by the templates loaded when RDFStore is started.
For each template, there is a corresponding API command. If the template is named X.txt, and
depends on parameters [0], [1], and [2], then the API command looks like:

http://open-physiology.org:20080/terms/%25s?longURI=yes&json=yes
http://open-physiology.org:20080/terms/FMA_50801?longURI=yes&json=yes

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 166 of 195

http://example.com:20060/X/?0=fill_this_in&1=also_fill_this&2=this_too

7.4.7 Low Level Services

We refer to services as low level services when they are mere syntactic variations on basic SPAQRL
commands. There are three kinds: commands to add a record and commands to delete a record as
well as commands to query records.

7.4.7.1 Query

A low level command allows wrapping (URL encoded) SPARQL queries.

For example: select ?x ?y ?z where {?x ?y ?z} limit 10

Can be invoked as:

http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20{%3Fx
%20%3Fy%20%3Fz}%20limit%2010

7.4.7.2 Insertion

A low level command allows inserting a triple (SPAQRL INSERT DATA):

http://localhost:20060/Insert_Triple_%28Fuseki%29/?0=a&1=b&2=c

7.4.7.3 Deletion

A low level command allows inserting a triple (SPAQRL INSERT DATA):

http://open-physiology.org:20060/Delete_Triple_%28Fuseki%29/?0=a&1=b&2=c

7.4.8 Specific TRIPLEStores Documentation

Specific documentation for using RDFStore with individual triplestores: Virtuoso and Fuseki.

7.4.8.1 Virtuoso

When your server is running Virtuoso, by default the SPARQL endpoint is on port 8890. In the
following documentation, we'll assume you keep that default; if you change it to another port, then
change everything accordingly.

7.4.8.1.1 Queries

Depending on what format you'd like the results in, you can use one of the following strings as the
"endpoint" when running Rdfstore.

7.4.8.1.1.1 JSON format

Endpoint string:

http://localhost:8890/sparql?default-graph-uri=&format=application%2Fsparql-
results%2Bjson&timeout=0&debug=on&query=

http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20%7b%3Fx%20%3Fy%20%3Fz%7d%20limit%2010
http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20%7b%3Fx%20%3Fy%20%3Fz%7d%20limit%2010
http://localhost:20060/Insert_Triple_(Fuseki)/?0=a&1=b&2=c
http://open-physiology.org:20060/Delete_Triple_%28Fuseki%29/?0=a&1=b&2=c

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 167 of 195

Minimum working example commandline:

java Rdfstore -endpoint "http://localhost:8890/sparql?default-graph-
uri=&format=application%2Fsparql-results%2Bjson&timeout=0&debug=on&query="

7.4.8.1.1.2 HTML Format

Endpoint string:

http://localhost:8890/sparql?default-graph-
uri=&format=text%2Fhtml&timeout=0&debug=on&query=

Minimum working example commandline:

java Rdfstore -endpoint "http://localhost:8890/sparql?default-graph-
uri=&format=text%2Fhtml&timeout=0&debug=on&query="

7.4.8.1.1.3 Other formats

Virtuoso makes a lot of other formats available. To see the list, go to this Virtuoso SPARQL
documentation page and scroll down to "16.2.3.3.3. Response Format".

For each listed content type, the general formula for the endpoint string is:

http://localhost:8890/sparql?default-graph-uri=&format=(content
type)&timeout=0&debug=on&query=

where (content type) is replaced by the url-encoded mimetype from the above link.

Example:

Suppose you want the format as "application/x-turtle".

Urlescape to get: "application%2Fx-turtle".

The endpoint string is:

http://localhost:8890/sparql?default-graph-uri=&format=application%2Fx-
turtle&timeout=0&debug=on&query=

7.4.8.1.2 Adding Triples

There are two things to know to set up triple-authoring via Rdfstore via Virtuoso.

7.4.8.1.2.1 Must specify graph

When adding a triple in Virtuoso, it is necessary to specify which graph it goes in. Here's an example
"Insert_Triple.txt" template:

 # 0 = Graph IRI
 # 1 = Subject IRI
 # 2 = Predicate IRI
 # 3 = Object IRI
 INSERT INTO <[0]>
 {
 <[1]>
 <[2]>
 <[3]>
 }

Note that the four comments at the beginning are just to tell the GUI what placeholder text to put in
the blank fields; they aren't strictly necessary.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 168 of 195

7.4.8.1.2.2 Must grant permission

By default, Virtuoso forbids triple-insertion via SPARQL endpoint. If triple-insertion is forbidden, then
your triple-insert Rdfstore templates will fail.

Here's how to enable triple-insertion via SPARQL endpoint:

 Connect to Virtuoso's ISQL console. From the command line on the machine where Virtuoso
is running, this is usually done with the "isql" command (or "isql-vt" on Ubuntu).

 Issue the command:

GRANT execute ON SPARQL_INSERT_DICT_CONTENT TO "SPARQL";

 You might be prompted for your Virtuoso credentials; if so, enter them.

 Issue the command:

GRANT execute ON SPARQL_INSERT_DICT_CONTENT TO SPARQL_UPDATE;

 If you also want to enable templates to delete triples, issues the following commands as well:

 GRANT execute ON SPARQL_DELETE_DICT_CONTENT TO "SPARQL"

GRANT execute ON SPARQL_DELETE_DICT_CONTENT TO SPARQL_UPDATE;

Note: If you are worried about the security implications of allowing triple-insertion via SPARQL
endpoint, our recommendation is as follows. You should configure your machine so that only
localhost is permitted to connect to port 8890 (or whichever port Virtuoso is running on). Then, you
can perform proper validation of user input in whatever program it is you're designing, before
invoking the RDFStore API.

7.4.8.2 Fuseki

By default, the Fuseki triplestore runs a SPARQL endpoint on port 3030. If you're running Fuseki on
some other port, change everything accordingly.

When using Fuseki, one gives one's dataset a name, and that name has to be inserted into the
SPARQL endpoint URL. For the documentation below, we will assume your dataset is named
"dataset". If you use a different name, change everything accordingly.

7.4.8.2.1 Queries

Depending on what format you like, you can run RDFStore with the following endpoint strings.

7.4.8.2.1.1 JSON

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=json&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=json&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

7.4.8.2.1.2 Text

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=text&query=

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 169 of 195

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=text&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

7.4.8.2.1.3 XML

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=xml&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=xml&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

7.4.8.2.1.4 Tab Separated Values (TSV)

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=tsv&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=tsv&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

7.4.8.2.2 Adding Triples

The Fuseki SPARQL endpoint uses different URLs for SPARQL queries and SPARQL updates.
Furthermore, it only accepts SPARQL updates sent with an HTTP POST, it rejects updates sent with
HTTP GET.

Fortunately, RDFStore allows you to specify a separate address/method for updates. Run RDFStore
with command line options

-updatemethod POST

and

-update "http://localhost:3030/dataset/update"

(replace "dataset" with the actual name of your dataset).

Minimal working example

If you want to run RDFStore using Fuseki as the triplestore, returning query results in JSON format,
and with a dataset named "models", you can run it as follows:

java Rdfstore -endpoint "http://localhost:3030/models/query?force-
accept=text%2Fplain&output=json&query=" -update "http://localhost:3030/models/update" -
updatemethod POST

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 170 of 195

7.4.9 OWL Ontology Services

As mentioned above, the RICORDO OWLKB [20] provides specific APIs for querying and adding to the
ontologies that reside in its knowledge base. These operations are exposed in the form of RESTfull
services with a simplified syntax. Moreover, a mechanism exists to create new terms in an ontology
when no logically equivalent term has been found. The knowledge base also supports inferencing on
its ontology.

The RDF store application on the other hand is dedicated to querying RDF annotations. However, it
contains as part of its implementation regarding the template mechanism described above, a way of
performing query expansion via a preliminary call to the knowledge base. Such a query includes a
step in which a query is sent to the knowledge base in order to extend the search space on the
annotation store.

OWLKB 2.0 is the Ricordo semantic reasoning server. It provides an API for querying semantic data
which is loaded from an ontology. OWLKB is smart enough to know the semantic meanings of the
terms in the ontology and to act accordingly.

As a simple example, suppose that the ontology says widget X was created at factory Y, and that
factory Y only creates blue widgets. A query for "show all blue widgets" will show X even if the
ontology does not explicitly say that X is blue: the reasoner is smart enough to deduce the blueness
of X from the other two facts.

7.4.10 Installation

- Ensure a java runtime and java compiler are installed.

- Use "git clone", or any other means, to copy the repository from
http://github.org/semitrivial/owlkb

- Within the directory containing the copy of the repository, expand OWLKB's dependencies
using "jar -xf dep.jar"

- Within the directory containing the copy of the repository, compile OWLKB using "make" (or
on Windows: "javac -g Owlkb.java")

- Within that directory, run "java Owlkb.java -help" to get help on the command line
arguments, or see further below.

7.4.11 Loading an Ontology

OWLKB loads ontologies in .owl form; we assume the user has an owlfile on their system. When
running OWLKB, one should specify the location of the desired .owl file. This is done using the -file
command line argument.

For example:

java Owlkb -file /home/ontologies/ricordo.owl

7.4.11.1 Command line arguments

OWLKB can be run with the following command line arguments.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 171 of 195

Argument Description Example or default

-file <location of file> Specifies which ontology file
OWLKB will load.

Default: ./templates

-port <port number> Specifies which ontology file
OWLKB will load.

Default: 20080

-reasoner <elk or hermit> Specifies which reasoner
OWLKB will use.

Supported: Elk, HermiT

-namespace <base of iri> Specifies the namespace to
be used for classes created
with OWLKB.

-save <true or false> Specifies whether or not
OWLKB saves new classes to
harddrive

Default: true

-help Displays a help screen.

7.4.12 Simple GUI

OWLKB comes with a simple GUI. When OWLKB is running, the GUI can be accessed at

http://localhost:20080/gui/

(replace "localhost" with whatever host you're running OWLKB on, and replace "20080" with
whatever port your OWLKB is running on, if necessary).

For example, the demonstration instance of OWLKB is running on host open-physiology.org on port
20080, so the GUI is at http://open-physiology.org:20080/gui.

The built-in GUI is mainly just for demonstration purposes. We anticipate OWLKB will mainly be used
directly via the API.

7.4.13 KBCaller Java Library

OWLKB is not designed as a library and is not. The reason for this is that OWLKB is rather resource-
intensive when loaded with a non-trivial ontology. Thus it makes more sense as a separate process
than as a library. Nevertheless, KBCaller is a Java mini-library which abstracts the act of sending API
requests to OWLKB over HTTP and can be used in Java-based projects.

7.4.13.1 Constructor

public KBCaller(String url)

Creates a KBCaller object. Specify the url of an OWLKB instance, including port.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 172 of 195

For example, the OWLKB demo instance has the url http://open-physiology.org:20080. If OWLKB is
running on the same machine as the Java application you're working on, and if OWLKB is running on
its default port (20080), you can use the url http://localhost:20080

7.4.13.2 API Methods

In all cases except for "addlabel", the methods return a list of results as a JSON list, e.g. something
like:

['FMA_50801','CHEBI_999','RICORDO_56345634']

If you would prefer the results as an ArrayList<String> and you don't want to add a full JSON parser
dependency to your project, we've included a bare-bones JSON-list-parser function in KBCaller:

public ArrayList<String> parse_json(String json) throws IOException

You can compose this with any of the String-returning API methods (except "subhierarchy"), for
example:

KBCaller kbcaller = new KBCaller("http://open-physiology.org:20080");

String subclasses_raw;

List<String> subclasses;

try

{

 String subclasses_raw = kbcaller.subterms("part-of some FMA_50801");

 subclasses = kbcaller.parse_json(kbcaller.subterms("part-of some FMA_50801"));

}

catch(Exception e)

{

 e.printStackTrace();

}

If you want to parse the "subhierarchy" JSON, you'll probably want to use a full JSON parser for that,
as it's not a flat list.

7.4.14 OWLKB API

OWLKB launches a server which listens for connections and responds to the following types of
requests.

Note: The "eqterms" type of request is special. Unlike the other commands, "eqterms" will actually
create a new class and add it to the selected ontology, if no equivalent class already exists. This is
one of the main features of OWLKB, creation of so-called composite terms.

7.4.14.1 Subterms

Finds all subterms of the indicated term. For example, "amino acid" is a subterm of "acid".

http://localhost:20080/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 173 of 195

Example:

http://localhost:20080/subterms/CHEBI_33709

7.4.14.2 Parents

Finds all the direct parents (i.e., the direct superclasses) of the indicated term.

Example:

http://localhost:20080/parents/CHEBI_33709

7.4.14.3 Children

Finds all the direct children (i.e., the direct subclasses) of the indicated term.

Example:

http://localhost:20080/children/CHEBI_33709

7.4.14.4 Siblings

Finds all siblings of the indicated term. A 'sibling' is defined to be an immediate subterm of an
immediate superterm of the indicated term.

Example:

http://localhost:20080/siblings/CHEBI_33709

7.4.14.5 Subhierarchy

Finds all subterms of the indicated term, and displays them in a hierarchical format (using JSON).

Example:

http://localhost:20080/subhierarchy/CHEBI_33709

7.4.14.6 Eqterms

Finds all terms equivalent to the indicated term. For example, the class of all "animal cells"
(CL_0000548) capable of some "reproductive process" (GO_0022414) is equivalent to the class of all
"germ line stem cells" (CL_0000039).

If there are no equivalent terms, a new class is created, defined to be equivalent to the indicated
term. The new class is saved to the ontology (unless saving to hard-drive was disabled by command-
line argument).

Example:

http://localhost:20080/eqterms/CL_0000548+and+(capable_of+some+GO_0022414)

7.4.14.7 Terms

Finds all terms and all subterms of the indicated term. Note that unlike "eqterms", this API command
will not create a new class if no equivalent classes are found.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 174 of 195

Example:

http://localhost:20080/terms/CL_0000548+and+(capable_of+some+GO_0022414)

7.4.14.8 Instances

Finds all instances of the indicated class. For example, "IN-VITRO-CCTYPE" might be an instance of
"TYPE-OF-CLINICAL-CONTEXT". (This is, of course, only for ontologies that include named individuals;
otherwise "instances" will always return the empty result set.)

Example:

http://localhost:20080/instances/TYPE-OF-CLINICAL-CONTEXT

7.4.14.9 Labels

Finds all labels annotated to the indicated term (specifically, all rdfs:label's). For example, the label
"Brain" is annotated to FMA_50801.

Example:

http://localhost:20080/labels/FMA_50801

7.4.14.10 Search

Finds all classes in the ontology with the given label (specifically, the given rdfs:label). Note that this
is an exact, case-sensitive search--a search for "Brai" or "brain" will not return "Brain" for instance.

Example:

http://localhost:20080/search/Brain

7.4.14.11 Addlabel

Adds a label to a class that was created with "eqterms". For syntax, see the example above. To be
more precise, the label which is added is an <rdfs:label>. Multiple labels can be added for a single
class. This command triggers OWLKB to save changes to the ontology to the hard drive (unless saving
has been disabled via command line).

Example:

http://localhost:20080/addlabel/RICORDO12345=volume+of+blood+in+aorta

7.4.15 JSON

There are three ways to coerce data into JSON format:

1. Include an URL paramater 'json'.

Example:

http://localhost:20080/subterms/FMA_50801?json

2. Include an URL parameter 'verbose'. In addition to changing the command output to json, this also
causes the command to send additional information (most importantly, it will send labels along with
terms).

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 175 of 195

Example:

http://localhost:20080/siblings/FMA_50801?verbose

3. Send a request header "Accept: application/json". This has the same effect as method number 1
from above.

Example:

curl --header "Accept: application/json" "http://localhost:20080/subterms/CHEBI_33709"

7.4.16 Verbose Results

Because of backward-compatibility considerations, the default form of OWLKB results is sparse
(including nothing but raw terms in most cases, whereas the user is probably interested in the labels
of those terms as well). In order to get labels along with terms, use the 'verbose' URL parameter.
Note that this will also coerce the results into JSON format.

Example:

http://localhost:20080/subterms/CHEBI_33709?verbose

7.4.17 Manchester Syntax

The strength of OWLKB is that in all the API commands where a term is expected, a compound term
can be indicated using Manchester Syntax. Of course, when passing Manchester Syntax in an URL, it
should be urlencoded.

Here are some examples of Manchester Syntax (we've replaced spaces with +'s so these examples
can be used in URLs):

- All subclasses of (GO_0000111 intersect GO_0000112):

o "GO_0000111+and+GO_0000112"

- All things that are GO_0000111 and part-of some GO_0000112:

o "GO_0000111+and+part-of+some+GO_0000112"

- All things that are (GO_0000111 intersect GO_0000112) and part-of some GO_0000113:

o "(GO_0000111+and+GO_0000112)+and+part-of+some+GO_0000113"

- All things that are GO_0000111 and part-of some (GO_0000112 intersect GO_0000113):

o "GO_0000111+and+part-of+some+(GO_0000112+and+GO_0000113)"

7.4.18 Terminology Services

Knowledge base caters for the logical content of term definitions. In addition, ontology terms can be
endowed with lexical information that allows to provide a human readable label for them and also to
offer a form of natural language interface to the knowledge base in order to find candidate terms by
their labels rather than by their logical descriptions. This facilitates the accessibility to the end users
by making use of the knowledge base.

While it is not the specialization of knowledge base technologies to handle natural language
processing, the RICORDO OWLKB is complemented with a minimalist terminology service. This

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 176 of 195

service provides lookup assistance and some degree of search based on the labels of the ontology.
However, it is far less robust and rich than third party services available over the web such as the
Ontology Lookup Service [24]. The rationale for having a smallest dedicated service is to provide
basic terminological support for ontologies that are local to the deployed knowledge base rather
than in the public domain, hence, the RICORDO addition of a “Local OLS” [25].

LOLS stands for Local Ontology Lookup Service. Its intended purpose: for a given set of ontologies, let
people look up rdfs:labels from IRIs and IRIs from rdfs:labels. LOLS is lean and minimalist, allowing
easy deployment on any machine, removing the need to refer to a centralized label lookup service
which might be located on the other side of the world.

Technically, LOLS has two components:

i) A converter which turns an OWL file into a LOLS file. Written in Java to use the OWLAPI.

ii) The main engine, which loads a LOLS file and serves API requests in HTTP. Written in C.

7.4.19 Prerequisite for Installation

- java runtime and java compiler

- C compiler (gcc)

7.4.20 Installation Instructions (tested on Linux and Mac)

- Use "git clone", or any other means, to copy the repository from
http://github.org/semitrivial/LOLS

Two subdirectories will be created: "converter" and "server"

- In the converter directory: expand dependencies with "jar -xf dep.jar"

- In the converter directory: "make" (or "javac -g Convert.java"). This creates a
"Convert.class" java executable for converting OWL files to LOLS files.

- In the server directory: "make" (or "gcc lols.c srv.c trie.c util.c -o lols"). This
creates an executable "lols" for running LOLS.

7.4.21 LOLS File Preparation

LOLS loads IRIs and rdfs:labels from an N-Triples file, which can be generated from an OWL ontology
file by means of a converter written in java.

Navigate to the LOLS converter directory (created in "Installation" above).

Run the following command:

java Convert (OWLfile) >(outputfilename)

For example, if your OWL file is located at "/home/ontologies/fma.OWL", and if you want the LOLS
file to be called "fma.LOLS", then you would run:

Example command to extract an N-Triples file, fma.nt, from an OWL file,
/home/ontologies/fma.OWL:

java Convert /home/ontologies/fma.OWL >fma.nt

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 177 of 195

It might be necessary to manually edit the LOLS file to remove unrelated output from the top of it,
which was placed there by the OWL reasoner. (In a future version of LOLS this step will not be
necessary.)

7.4.21.1 Multiple OWL Files

If you have multiple OWL files and you want a single LOLS file to cover all of them, what you should
do is create a shell ontology (see example below) file which imports all the desired ontologies. Then
run the converter on the shell ontology.

Example

For example, suppose you want your LOLS file to cover /home/fma.owl, /home/chebi.owl, and
/home/go.owl. Then you can create the following shell ontology and run the converter on it:

 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#">
 <owl:Ontology rdf:about="http://open-physiology.org/shell-ontology">
 <owl:imports rdf:resource="file:/home/ricordo/ontology/fma.owl"/>
 <owl:imports rdf:resource="file:/home/ricordo/ontology/chebi.owl"/>
 <owl:imports rdf:resource="file:/home/ricordo/ontology/go.owl"/>
 </owl:Ontology>
 </rdf:RDF>

By modifying the above example in the obvious way, you can write a shell ontology to cover
whatever set of ontologies you like. Then run the converter on it to get the desired LOLS file. (Note:
the url "http://open-physiology.org/shell-ontology" in the example is just a placeholder url, anything
will work there and it won't effect the resulting LOLS file.)

7.4.22 Running the LOLS Server

Once you've created a LOLS file, you can launch the LOLS server by going to the "server" directory
(created in "Installation" above) and running:

./lols (path to LOLSfile)

For example, if you created the LOLSfile "/home/ontologies/mylols.LOLS", then you can run:

./lols /home/ontologies/mylols.LOLS

By default, LOLS will open an HTTP server on port 5052. (You can change that in srv.c and re-compile,
if you prefer another port.) See "API" (below) and "Built-in GUI" (below) for how to actually use that
server.

7.4.23 Simple GUI

LOLS comes with a simple built-in GUI. Assuming the LOLS server is running, you can access the GUI
at http://(yourdomain):5052/gui

Example

If your domain is "example.com" then you can access the LOLS GUI at

http://example.com:5052/gui

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 178 of 195

Of course, if you don't have a domain, an IP address or "localhost" can be used instead.

7.4.24 LOLS API

LOLS launches a server which listens for connections and responds to the following types of requests.

In each case, the results are output in JSON format.

7.4.24.1 IRI

Finds all rdfs:labels associated to the class with the specified IRI. The IRI can either be specified in full,
as in the second example, or else abbreviated as in the first example.

Example (shortform):

http://localhost:5052/iri/FMA_50801

Example (longform):

http://localhost:5052/iri/http%3A%2F%2Fpurl.org%2Fobo%2Fowlapi%2Ffma%23FMA_50801

Note that "http%3A%2F%2Fpurl.org%2Fobo%2Fowlapi%2Ffma%23FMA_50801" is the urlencoded
result of "http://purl.org/obo/owlapi/fma#FMA_50801".

7.4.24.2 Label

Finds all IRIs of classes with the indicated rdfs:label (case sensitive). The IRIs are given in full.

Example:

http://localhost:5052/label/Brain

7.4.24.3 Label Case Insensitive

Finds all IRIs of classes with the indicated rdfs:label (case insensitive). The IRIs are given in full.

Example:

http://localhost:5052/label/brain

7.4.24.4 Label shortiri

Finds all IRIs of classes with the indicated rdfs:label (case sensitive). The IRIs are given in abbreviated
form, if possible.

Example:

http://localhost:5052/label-shortiri/Brain

7.4.24.5 Label shortiri Case Insensitive

Finds all IRIs of classes with the indicated rdfs:label (case insensitive). The IRIs are given in
abbreviated form, if possible.

Example:

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 179 of 195

http://localhost:5052/label-shortiri-case-insensitive/brain

7.5 CHIC Semantic Models

The CHIC semantic infrastructure hosts semantic data that is made primarily of annotations of CHIC
resources on the one hand and supporting data on the other hand. The supporting data is made on
the side of the annotation store with schemas for the articulation of these descriptions and the
querying of annotations. A schema, in that sense, is a less complex ontology of the CHIC resources
themselves, an ontology we baptised CHICRO for CHIC Resource Ontology. CHICRO contains the main
types of CHIC resources handled in the CHIC Model Repository and the Hypermodelling Editor. In
addition, the Clinical Data Repository has its own schema and variant or extension of CHICRO.

7.5.1 Ontology of CHIC Resources (Main Concept in CHICRO)

CHICRO is a very small ontology intended to categorise and describe the relationships between CHIC
resources at a high level of generality. It’s main concepts are as follows [26]:

• Modelling objects – a class of objects. An instance of the class Modelling Object is a model or
a part (logical or conceptual) of a model, in particular a parameter.

• Mathematical models – a subclass of the class of modelling objects. An instance of the class
MathematicalModel is a model.

• Hypermodels – a subclass of the class of mathematical models. An instance of the class
Hypermodel is a hypermodel in the sense of CHIC technical specifications.

• Hypomodels – a subclass of the class of mathematical models. An instance of the class
Hypomodel is a hypomodel in the sense of CHIC technical specifications.

• Parameter of a mathematical model – a subclass of the class of modelling objects such that
an instance of this class is a parameter of a mathematical model.

• Input parameter of a mathematical model – a subclass of the class of parameter of a
mathematical model such that an instance of this class is an input parameter of some
mathematical model.

• Output parameter of a mathematical model – a subclass of the class of parameter of a
mathematical model such that an instance of this class is an output parameter of a
mathematical model.

A schema has been implemented in RDF and is used in the main CHIC triple store. While the
implementation is mature enough to handle the main cases, it is also open ended and extensible and
therefore provisions are made for new refinement or corrective versions. At the time of this writing,
the current version is 0.9.1 (Figure 60) and will be consolidated into 1.0 in the final stages of the
project.

Selected versions may be accessed here: https://github.com/open-
physiology/chic/tree/master/rdfschema

http://localhost:5052/label-shortiri-case-insensitive/brain
https://github.com/open-physiology/chic/tree/master/rdfschema
https://github.com/open-physiology/chic/tree/master/rdfschema

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 180 of 195

Figure 60: A screenshot of CHCRO visualised in the Protégé ontology editor. The left top panel shows the
class primitive hierarchy (there are no classified models nor inferred specialisations appearing)

7.5.2 Annotation Vocabulary included in CHICRO Schema

The CHICRO RDF schema also allows the constraint of the vocabulary used in order to annotate
selected types of resources. Table 83 shows annotation properties susceptible of being used in the
annotation of models and parameters. The vocabulary is constrained to use entities of the intended
kind in the subject and object positions of the annotation triples by using the listed properties as
predicates [26].

The properties apply to a number of object of different kinds and levels of generality and can be
broadly categorised as being intended for:

 All-objects annotation

 Model annotation

 Parameter annotation

Table 83: Annotation properties applying to all objects

Name Symbol in CHICRO Domain Range

Title or Name hasName chicro:Object rdfs:Literal

Description hasDescription chicro:Object rdfs:Literal

We define 13 annotation relationships corresponding to each of the intended perspectives (D6.1)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 181 of 195

Table 84: Annotation properties applying to models

Name Symbol in CHICRO Domain Range

Perspective 1 hasPositionIn-01 chicro:Model Set of relevant URIs for
Tumour-Affected
Normal Tissue
Modelling

Perspective 2 hasPositionIn-02 chicro:Model Set of relevant URIs for
Spatial Scale(s) of the
Manifestation of Life

Perspective 3 hasPositionIn-03 chicro:Model Set of relevant URIs for
Temporal Scale(s) of
the Manifestation of
Life

Perspective 4 hasPositionIn-04 chicro:Model Set of relevant URIs for
Biomechanism(S)
Addressed

Perspective 5 hasPositionIn-05 chicro:Model Set of relevant URIs for
Tumour Type(S)
Addressed

Perspective 6 hasPositionIn-06 chicro:Model Set of relevant URIs for
Treatment Modality(-
ies) Addressed

Perspective 7 hasPositionIn-07 chicro:Model Set of relevant URIs for
Generic Cancer Biology
– Clinically Driven
Character of the
Modelling Approach

Perspective 8 hasPositionIn-08 chicro:Model Set of relevant URIs for
Order of Addressing
Different Spatial Scales

Perspective 9 hasPositionIn-09 chicro:Model Set of relevant URIs for
Order of Addressing
Different Temporal
Scales

Perspective 10 hasPositionIn-10 chicro:Model Set of relevant URIs for
Mechanistic-Statistical

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 182 of 195

Character of the
Modelling Approach

Perspective 11 hasPositionIn-11 chicro:Model Set of relevant URIs for
Deterministic-
Stochastic Character of
the Modelling
Approach

Perspective 12 hasPositionIn-12 chicro:Model Set of relevant URIs for
Continuous-Finite-
Discrete Character of
the Mathematics
Involved

Perspective 13 hasPositionIn-13 chicro:Model Set of relevant URIs for
Closed Form Solution –
Algorithmic Simulation
Modelling Approach

Table 85: Annotation properties applying to model parameters

Name Symbol in CHICRO Domain Range

datatype parameterhasDatatype chicro:Parameter xsd datatypes (and
possible additions)

unit parameterHasUnit chicro:Object Set of relevant URIs

In order to record the interpretation of a given object according to a domain specific definition, for
example, that a given parameter is a rate of cell killing, we use a specific relationship rather than the
rdf:type property.

Table 86: Annotation property for making a semantic type explicit

Name Symbol in CHICRO Domain Range

Semantic type hasInterpretedType chicro:Object Set of relevant URIs

In addition to the above, the CHICRO schema also contains information which intends on guiding the
development of the corresponding Graphical User Interfaces that are either used to create or display
annotations.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 183 of 195

7.5.2.1 Service operations using the annotation vocabulary included in CHICRO Schema

These can be retrieved by direct query to the RDF store. For example, given the model description
guidelines [27], Figure 61 shows the SPARL query to retrieve the vocabulary related to the annotation
of Perspective V.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?valueURI ?valueLabel where {

<http://www.chic-vph.eu/ontologies/resource#hasPositionIn-5> <http://www.chic-
vph.eu/ontologies/resource#designatedValueWithPreferredLabel> ?pair .

?pair rdf:first ?valueURI .

?pair rdf:rest ?rest .

?rest rdf:first ?valueLabel

}

Figure 61: Example of SPARQL query to retrieve information to be used in GUI

 Figure 62 shows the set of pairs of URIs and labels to be displayed to a user through a Graphical User
Interface corresponding to the query. Such information may be used, for example in the Model
Repository annotation interface.

Figure 62: Example of the mapping of URIs related to the annotation for Perspective IV with the labels
corresponding to the concepts to be displayed in a GUI (Output retrieved from RDF Store)

7.5.2.2 Template-based service operations using the annotation vocabulary

Furthermore, a number of specialised service calls can be defined to suit specific use cases and
requirements. In a manner of illustration we specify a few basic examples. The tools put in place
allow for specifying any further needed specific requests.

7.5.2.2.1 Get_Hypomodels

Arguments: none

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 184 of 195

Description: Returns a once column table of URIs for hypomodels.

Method: GET

URL: http://<HOST>:<PORT>/Get_Hypomodels/

Body: [nil]

Example request: Returns all the hypomodels URIs

http://localhost:20060/Get_Hypomodels

Example response:

<pre>

<http://example/update-base/#model1>

<http://example/update-base/#model2>

</pre>

Template .txt

select distinct ?model where {

?model <http://www.w3.org/2000/01/rdf-schema#type>

<http://www.chic.eu/ontologies/resource#Model-ChicHypomodel>

}

7.5.2.2.2 Get_HypomodelInputParameter_ByInterpretation_exactMatch

Argument_0: URL encoded URI

Description: Returns a one column table of URIs of input parameters of any model such that the
parameter is annotated with the URI provided as argument.

Method: GET

URL: http://<HOST>:<PORT>/Get_HypomodelInputParameter_ByInterpretation_exactMatch/?
0=<URL-ENCODED-URI>

Body: [nil]

Example request: Returns all the input parameters whose interpretation is
http://www.chic.eu/ontologies/some-domain-ontology#CHIC_0001023 (a fictional concept for the
sake of illustration)

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 185 of 195

http://localhost:20060/Get_HypomodelInputParameter_ByInterpretation_exactMatch/?0=http%3A
%2F%2Fwww.chic.eu%2Fontologies%2Fsome-domain-ontology%23CHIC_0001023

Example response:

<pre>

<http://example/update-base/#parameter2a>

<http://example/update-base/#parameter1>

</pre>

Template .txt

0 interpretation

select distinct ?parameter where {

?parameter <http://www.chic.eu/ontologies/some-model-ontology#interpreted-type> <[0]>
.

?parameter <http://www.chic.eu/ontologies/some-model-ontology#input-parameter-of>
?model }

7.5.2.2.3 Get_HypomodelOutputParameter_ByInterpretation_exactMatch

Argument_0: URL encoded URI

Returns a one column table of URIs of output parameters of any model such that the parameter is
annotated with the URI provided as argument.

Metho
d:

GET

URL: http://<HOST>:<PORT>/Get_HypomodelOutputParameter_ByInterpretation_exactMatch/?
0=<URL-ENCODED-URI>

Body: [nil]

Example request: Returns all the output parameters whose interpretation is
http://www.chic.eu/ontologies/some-domain-ontology#CHIC_0001023 (a fictional concept for the
sake of illustration)

http://localhost:20060/Get_HypomodelOutputParameter_ByInterpretation_exactMatch/?0=http%3
A%2F%2Fwww.chic.eu%2Fontologies%2Fsome-domain-ontology%23CHIC_0001023

Example response:

<pre>

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 186 of 195

<http://example/update-base/#parameter3a>

</pre>

Template .txt

0 interpretation

select distinct ?parameter where {

?parameter <http://www.chic.eu/ontologies/resource#hasInterpretedType> <[0]> .

?parameter < http://www.chic.eu/ontologies/resource#output-parameter-of> ?model

}

7.5.2.2.4 Get_Consistent_HypomodelOutputParameter_ByInterpretation_exactMatch

Argument_0: URL encoded URI

Returns a one column table of URIs of output parameters of any model such that the parameter is
annotated with the URI provided as argument.

Method: GET

URL: http://<HOST>:<PORT>/Get_Consistent_HypomodelOutputParameter_ByInterpretati
on_exactMatch/?0=<URL-ENCODED-URI>

Body: [nil]

Example request: Returns all the output parameters of any hypomodel whose interpretation is
exactly the same as that of http://example/update-base/#parameter2a (a fictional parameter URI for
the sake of illustration)

http://localhost:20060/Get_Consistent_HypomodelOutputParameter_ByInterpretation_exactMatch
/?0=http%3A%2F%2Fexample%2Fupdate-base%2F%23parameter2a

Example response:

<pre>

<http://example/update-base/#parameter3a>

</pre>

Template .txt

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 187 of 195

0 parameter

select distinct ?parameter2 where {

<[0]> < http://www.chic.eu/ontologies/resource#interpreted-type> ?i .

?parameter2 < http://www.chic.eu/ontologies/resource#interpreted-type> ?i .

?parameter2 < http://www.chic.eu/ontologies/resource#output-parameter-of> ?model2

}

7.5.3 Domain Ontologies

The domain ontology coverage in CHIC intends to support the annotation of models and their
parameters. These are relatively well defined and short excerpts of third party ontologies may be
used to pinpoint concepts requiring an externalizable reference. In some cases, the existing
repertoire of ontologies presents gaps and does not cover the needs of specific annotation
properties or incompletely does so. The methodological strategy adopted early in the project to
reuse communally maintained publicly available ontologies and complete them on an ad hoc basis is
still followed. It is possible that these ad hoc additions will be consolidated in ontology products in
their own right if they prove significantly reusable and pass standard tests of quality assurance
(following in particular the OBO Foundry principles of ontology development [28]).

Our strategy is to enable the use of semantic annotation and then to go through cycles of
refinements. For this reason we will adopt the following:

Domain

Units of measurement Unit Ontology http://obofoundry.org/ontology/uo.html

Perspectives Existing Ontologies or Ad
Hoc Ontology

Existing ontologies or parts of existing
ontologies can be used for different
perspectives (for example, the Disease
Ontology for perspective 5 or the Unit
Ontology for perspective 3) or ad hoc
ontologies can be developed for others.

Semantic types Combinations of ontologies,
among which:

FMA

CHEBI

GO

PATO

Ad Hoc Extensions

The external ontologies are developed
and maintained within the framework of
the Open Biomedical Ontologies (OBO
Foundry, http://obofoundry.org/).

Ad hoc extensions are the subject of
further development and involve
extensions and combinations of the
above.

The relevance of ontologies in the CHIC infrastructure is primarily perceived to be the knowledge
base which supports the search of models. Ontologies are deposited in the knowledge base which as

http://obofoundry.org/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 188 of 195

mentioned above supports reasoning. The storage of annotation supports lookup corresponding to
exact match searches. By combining both, it becomes possible to use inferences in order to make
more relevant or abstract queries.

For instance, as shown in Figure 62, models can be annotated according to Perspective V by using a
number of selected terms. Many of these belong to the Human Phenotype Ontology [29]. Queries
can be run in order to retrieve models annotated to these terms. In order to retrieve models while
keying the query to a more general term that could subsume several terms, the knowledge of the
way the terms relate in a hierarchy is needed. This knowledge is provided by the HPO which in turn is
included in the CHIC knowledge base.

Figure 63 shows the knowledge in a hierarchical arrangement. One of the terms used in the
annotation of CHIC model is that for the Wilms tumour. By the standards of HPO, this is a
specialization of neoplasm.

Figure 63: Excerpt of the HPO hierarchy

The RDF store application allows searching the CHIC triple store for models annotated with a
specialization of neoplasm (Figure 64) and the lookup queries sent to the triple store are then applied
to the list of specializations to produce the results (Figure 65).

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 189 of 195

Figure 64: Specializations of neoplasm listed
from inference in the knowledge base

Figure 65: Query results for models annotated with a
specialization of neoplasm in the triple store

The mechanism described here illustrates the level of integration in the CHIC semantic infrastructure
as it involves communication between the two primary components of the CHIC semantic
infrastructure which are the triple store of annotations on the one hand and the knowledge base of
ontologies on the other hand.

7.6 Ontology Authoring (Prototype)

The main challenge in the annotation strategy used in CHIC and in relation to the final infrastructure
envisioned consists in improving the availability of terms. As mentioned earlier, most of the
annotation properties are well defined and the range of intended annotations available can be listed
with occasional additions on a discrete basis. There is a very important exception which is the
annotation of the interpretation of model parameters, in particular their biological meaning when
they have one. By nature, these relate to large classes of biological phenomena, measurements and
quantities. Form experience, it is possible to sketch a generic vocabulary that may cover most cases
(e.g., concentration, rate, etc.). But in order to gain such a scope, the generalization has to be high
and the specificity of the parameter may remain inexplicit. This state of affairs is one of the
impediments to the automation of parameter matching in the hyper-modelling editor.

A still experimental solution consists in allowing for the definition of a range of parameter
interpretations, as they become needed. The primary technical obstacle is to resolve the gap
between the annotating user (a modeller) and the format of additional ontology term definitions that
the semantic infrastructure currently allows by making use of compositions.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 190 of 195

Figure 66: The knowledge base and its API support the creation of terms from their logical definition. Such
terms can then be labelled with a human readable name and can then be made available to the user through
their lexical information or by other means of sea

Figure 66 illustrates a prototype desktop GUI showing how the functionality could be implemented in
other parts of the user oriented CHIC components. This solution is not mature enough to gauge
whether it can be robustly integrated as a final component in the CHIC semantic infrastructure.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 191 of 195

8 Conclusion

The final report of the CHIC Repositories has been presented in this document. More specifically, the
Model Repository which stores the multiscale models and the complementary tools and modules
that are needed for the construction of hypermodels has been analysed in chapter 4. The Clinical
Data Repository which stores the heterogeneous multiscale data coming from the clinical
environment (clinical trials) and the In Silico Trial Repository which stores the input and output of the
in silico simulations along with the complete profile of each simulation are described in chapters 5
and 6 respectively. Finally, the Metadata Repository which stores the machine-readable
documentation material that represents models and data has been outlined in the last chapter. As
illustrated in this document, all the aforementioned Repositories play a key role in the operation of
the CHIC platform as a whole, since they constitute the software building blocks of the system. The
integration of the aforementioned Repositories into the CHIC platform ensures the persistent, secure
and efficient storage of all the CHIC resources and thus both models and data are readily available to
authorized users, either through the user interface or through the corresponding web services.
Nonetheless, since technology is never stagnant and new clinical and research requirements may be
posed in the future, the Repositories will always have to be revised, updated and extended with the
creation of supplementary modules and web services in order to make them even more
comprehensive.

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 192 of 195

9 References

[1] D8.1 – Design of the CHIC repositories

[2] D6.2 – CHIC cancer component models: initial tested versions

[3] OData, “An open protocol to allow the creation and consumption of queryable and
interoperable RESTful APIs in a simple and standard way.”, [Online]. Available:
http://www.odata.org. [Accessed 9 August 2016].

[4] ASP.NET Web API, “ASP.NET Web API is a framework that makes it easy to build HTTP services
that reach a broad range of clients, including browsers and mobile devices.”, [Online].
Available: http://www.asp.net/web-api. [Accessed 9 August 2016].

[5] M. Kistler, S. Bonaretti, M. Pfahrer, R. Niklaus, P. Büchler, The Virtual Skeleton Database: An
Open Access Repository for Biomedical Research and Collaboration. J. Med. Internet Res.
15:e245, 2013.

[6] C. Rosse, and J. Mejino. A reference ontology for biomedical informatics: the Foundational
Model of Anatomy. J. Biomed. Inform. 36:478–500, 2003.

[7] SPARQL, “Query Language for Resource Description Framework (RDF)”, [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query. [Accessed 9 August 2016].

[8] XDASv2, “The XDASv2 specification provides a standardized classification for audit events.”,
[Online]. Available:
https://www.netiq.com/documentation/edir88/pdfdoc/edirxdas_admin/edirxdas_admin.pdf.
[Accessed 9 August 2016].

[9] XDASv2Net, “XDASv2Net is a .NET library containing the model of the XDASv2 specification.”,
[Online]. Available: https://github.com/niklr/XDASv2Net. [Accessed 9 August 2016].

[10] elastic, “The company behind the open source projects Elasticsearch, Logstash, Kibana, and
Beats”, [Online]. Available: https://www.elastic.co/. [Accessed 9 August 2016].

[11] angular-query-builder, “Dynamic query building UI written in Angular and Bootstrap.”,
[Online]. Available: https://github.com/niklr/angular-query-builder. [Accessed 9 August 2016].

[12] RdfMapperNet, “A .NET library to map classes to RDF triples.”, [Online]. Available:
https://github.com/niklr/RdfMapperNet. [Accessed 9 August 2016].

[13] RdfstoreNet, “A .NET library for the Open Physiology Rdfstore API.”, [Online]. Available:
https://github.com/niklr/RdfstoreNet. [Accessed 9 August 2016].

[14] https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-
queuing-protocol

[15] Constantine L., and Lockwood, L. Software for Use: A Practical Guide to the Essential Models
and Methods of Usage-Centered Design. Reading, MA: Addison-Wesley, 1999. (Russian
translation 2004, Chinese translation 2004, Japanese translation 2005.)

[16] https://www.w3.org/RDF/

[17] https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

[18] https://www.w3.org/OWL/

[19] http://jena.apache.org/documentation/serving_data/index.html

[20] https://github.com/open-physiology/owlkb

[21] http://owlapi.sourceforge.net/

https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-protocol
https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-protocol
https://www.w3.org/RDF/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/OWL/
http://jena.apache.org/documentation/serving_data/index.html
https://github.com/open-physiology/owlkb
http://owlapi.sourceforge.net/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 193 of 195

[22] https://www.cs.ox.ac.uk/isg/tools/ELK/

[23] https://github.com/open-physiology/rdfstore

[24] http://www.ebi.ac.uk/ols/index

[25] https://github.com/open-physiology/LOLS

[26] D7.3 – Hypermodels annotation services

[27] D6.1 – Cancer hypomodelling and hypermodelling strategies and initial component models

[28] http://www.obofoundry.org/

[29] http://human-phenotype-ontology.github.io/

[30] D6.3 – Initial Standardized Cancer Hypermodels

https://www.cs.ox.ac.uk/isg/tools/ELK/
https://github.com/open-physiology/rdfstore
http://www.ebi.ac.uk/ols/index
https://github.com/open-physiology/LOLS
http://www.obofoundry.org/
http://human-phenotype-ontology.github.io/

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 194 of 195

Appendix – Abbreviations and acronyms

SOA

SP

SSO

STS

Service Oriented Architecture

Service Provider

Single Sign On

Security Token Service

REST Representational State Transfer

RST Request Security Token

RSTR Request Security Token Response

SAML Security Assertion Markup Language

HTTP HyperText Transfer Protocol

RFC Request for Comments

API Application Programming Interface

JSON JavaScript Object Notation

XML Extensible Markup Language

UTF Unicode Transformation Format

URL Uniform Resource Locator

TTP Trusted Third Party

MIT Massachusetts Institute of Technology

CRAF Clinical Research Application Framework

WP Work Package

RDF

OWL

HPO

ER

UUID

ID

HF

SSL

URL

ORM

MVC

Resource Description Framework

Web Ontology Language

Human Phenotype Ontology

Entity Relationship

Universally Unique Identifier

Identification

Hypermodelling Framework

Secure Sockets Layer

Uniform Resource Locator

Object Relational Mapping

Model View Controller

Grant Agreement no. 600841

D8.4 – Report on the final system

Page 195 of 195

HTML

AMQP

Hypertext Markup Language

Advanced Message Queuing Protocol

